摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
同時也有1部Youtube影片,追蹤數超過12萬的網紅朱學恒的阿宅萬事通事務所,也在其Youtube影片中提到,本單位規劃拍攝製作過程長達四年,拍攝地點橫跨東京都、山口縣、台北、兵庫縣、巴黎的獺祭紀錄片,在大家都不能出國的時候,在這時候公開讓大家看看吧! 櫻井博志會長:【Dassai這個名字,寫成水獺祭典的「獺祭」兩個字。同時也跟中國的二十四節氣的第一個節氣有關聯。至於為什麼用這個名字,是因為我們家的地名。...
「接合方法種類」的推薦目錄:
接合方法種類 在 國家衛生研究院-論壇 Facebook 的最佳解答
【重點開發中的 COVID-19 疫苗,分別採取什麼樣的策略或技術?又有何優劣之處?】:產官學研齊力開發,疫苗藥物指日可待:面對全球性的防疫需求,與其盼望國外能夠供應足夠的疫苗給台灣,我國必須要厚植自製疫苗的能力,以滿足國內的防疫需求,並且兼顧國際防疫合作。
在疫情發生初期,產學研界即啟動投入疫苗研發。例如:「財團法人國家衛生研究院」利用4種技術平台同步開發,最快在今(2020)年秋季即可進入人體臨床試驗;「中央研究院」開發的奈米疫苗,目前也正進行疫苗劑型與劑量的優化。
前述兩個研究單位的成果均已與國內廠商洽談並啟動合作。此外,國內廠商所開發的疫苗也預計於今年底前可進入臨床人體試驗。(資料來源:【註1】)
■疫苗等於國安產業,國家應領頭開發,自主研發疫苗,確保防疫能量
為了對抗武漢肺炎(新型冠狀病毒病,COVID-19),目前國內共有3家疫苗廠投入研發生產疫苗,其中進度最快的為高端疫苗,該公司目前已完成200隻老鼠的動物試驗,試驗結果將於7月初與合作夥伴美國國衛院(NIH)共同發布於國際知名期刊上。
「高端疫苗」總經理陳燦堅表示,新冠肺炎疫情雖已和緩,但各國現在都明白,「生技力量等於國安力量」、「疫苗等於國安產業」,像2009年當時爆發H1N1流感大流行,全球疫苗都被大國搶購一空,台灣只能取得零星數量,當年美國接種疫苗人數超過8000萬人,等於世衛組織疫苗分配計畫的其他77國總和。
由於台灣人口較少,不是歐美藥廠的主力市場,就算國際大廠疫苗開發成功,台灣也不容易取得足夠劑量,所以台灣一定要有自主研發疫苗的能力與設備,才能確保台灣防疫能量。
(資料來源:【註2】)
■淺談「疫情之下的研發疫苗」
首先,就要從人體的免疫系統開始講起,2020年全球最大的頭號公敵,非COVID-19(俗名:武漢肺炎)莫屬。臨床上除了找出可治療的藥物來緊急救援,另一個真正一勞永逸的解決方案是研發疫苗。因此,各國紛紛加緊腳步,疫苗研發的方法可說是百花齊放。
金庸筆下的故事中,總是如此設定:「同樣的招數對武功高手是無效的!」,人體的免疫系統就如同武術高手般,當第二次面臨相同或相似的病原體時,免疫系統能夠發揮其記憶特性,快速產生強大的免疫反應以消滅病原體,欲侵略身體的外敵則沒了可趁之機。所以,疫苗的首要作用就是讓免疫系統,在面對真正的敵人之前,可以事先預演一番。
那麼,以疫苗作為免疫系統的假想敵,從技術層面上,可以運用很多種類型。就像是拳擊比賽之前,你可以練習跟師傅打或是跟沙袋打,學習成果當然也會隨之產生差距。
■重點開發中的 COVID-19 疫苗,分別採取什麼樣的策略或技術?又有何優劣之處?
▶ 傳統疫苗:製備風險高,研發時程緩不濟急
【方法】:疫苗最傳統的策略是使用「整個病原體(whole-organism)」,又可分為兩大類,活的減毒疫苗(attenuated) 與死的去活化疫苗(inactivated),簡單來說就是將被打殘或被打死的病原體,用來作為免疫系統的假想敵。
【優】:使用傳統減毒疫苗的優點在於,可以模仿「自然感染」的免疫反應,當刺激免疫系統後,所產生的保護力較為持久。目前市面上的疫苗如流感疫苗、小兒麻痺疫苗等均是由這類傳統方法製備而來。
【劣】:然而,無論是減毒或去活化疫苗,這兩類在製備時都需要培養大量的病原體,操作人員可能因病原體去活化不完全,而被意外感染的風險較高,再加上傳統疫苗的開發時程漫長 (約 10-15 年),又需依經驗證明其療效。
▶ 最受矚目的 mRNA 疫苗,研發速度最快
【方法】:mRNA 疫苗的原理是將病毒某些遺傳物質片段製作成 mRNA 送入人體。人體細胞可以直接將其轉譯出病毒的蛋白質,這些能夠引起免疫反應的蛋白質就是疫苗很重要的抗原(Antigen,縮寫 Ag)。這些抗原進而可以引發後續的免疫反應,讓人體的免疫系統可以有效辨認出病毒。
【優】:mRNA 疫苗的優點是能縮短開發時間,只要擁有病毒的序列,可以立即把其中的序列片段製成 mRNA 疫苗,並以人體作為直接合成病毒抗原的代工廠,而無需體外的抗原製備過程。
【劣】:但缺點是 mRNA 分子並不穩定且保存不易,mRNA 對熱敏感,很容易被普遍存在於環境或皮膚上的 RNA 酶 (RNase) 降解。因此,mRNA 疫苗的有效性仍待進一步證實。
▶DNA 疫苗:搶時效的重要策略之一
【方法】:DNA 疫苗與 mRNA 疫苗的原理相似,也是只需擁有病毒序列就能製備,兩者差異在於進入體内表現病毒抗原的載體從 mRNA 變成 DNA。另一個差異則是,DNA 疫苗必須送進細胞最裡層的細胞核才能發揮作用,而 mRNA 只需進入細胞質即可。
【優】:DNA 疫苗的優點也是開發時程較短,同樣為利用人體細胞作為病毒抗原的代工廠。
【劣】:但缺點是需要特殊的傳輸方式才能進入細胞核,此外 DNA 疫苗有可能會嵌入到人體基因組,而產生突變的風險變高,所以安全性方面有所疑慮。
★ 接下來要介紹的疫苗技術則都是在「人體外」製備病毒抗原,而不同策略的差異只在於運用的載體有所不同而已。
▶重組病毒疫苗、類病毒顆粒疫苗,運用不同「病毒替身」引發免疫反應
【方法】:
重組病毒疫苗是利用活的「弱病毒」作為載體,並加入能表現出病原體抗原的基因;
類病毒顆粒疫苗則是利用不具病毒遺傳物質的「病毒空殼」作為載體,並加入病原體抗原的蛋白質。這類體外製備病毒抗原的缺點是,技術門檻較為複雜,要耗費的時程也比較久
【優】:但好處是利用弱病毒作為疫苗,弱病毒能在被感染的人體內複製,通常可引發較佳的免疫刺激能力。
【劣】:而不具感染力的類病毒顆粒疫苗,其安全性較高,但免疫刺激效果稍差。
▶台灣拼研發 COVID-19 疫苗,多管齊下
「國家衛生研究院」宣布同時投入四種疫苗的研發,包括 DNA、重組病毒、胜肽、次單位疫苗。
【方法】:後兩者尚未介紹到的胜肽、次單位疫苗,其原理是以病原體部分結構作為疫苗,也屬於在「人體外」製備病毒抗原。
【優】:優點為不具感染性,安全性高。
【劣】:但缺點是必須深入了解病毒特性後,才可找出真正有效的抗原,以利產生正確的免疫記憶力。
▶中央研究院兩項疫苗技術可應用於開發 COVID-19 疫苗,也都屬於在「人體外」製備病毒抗原:
1.「奈米疫苗」
【方法】:原理是以生物材料製成中空的奈米粒子來模仿病毒結構,在表面附著病毒抗原,內部裝有可加強免疫反應的佐劑 (adjuvant)。
【優】:不具感染性,安全性高。
【劣】:須深入了解病毒特性,找出真正有效的抗原,才能產生正確的免疫記憶力。
2.「醣蛋白疫苗」
【方法】:原理是將病毒蛋白質表面的醣分子修飾並保留重要的核心結構來引發免疫反應,由於被醣分子蓋住的蛋白質序列不太會改變,因此醣蛋白疫苗具備應付病毒變異,並有成為廣效性疫苗的優勢。
【優】:不具感染性,安全性高,有機會應付病毒變異,成為廣效性疫苗。
【劣】:須深入了解病毒特性,找出真正有效的抗原,才能產生正確的免疫記憶力。(資料來源:【註3】)
■「疫苗國家隊」
台灣生技醫療業界包括國家衛生研究院、生技中心、國光生醫、高端疫苗、 亞諾法、台康生技、台灣圓點等廠商,已在第一時間組成抗疫國家隊,積極投入研發抗疫行列,鎖定檢測試劑、疫苗及治療藥物三大方向,目前疫苗已有初步進度。
擔任行政院「COVID-19科技防疫推動會議」疫苗組召集人的前疾管局長蘇益仁多次呼籲速成立疫苗國家隊,指出歐美各國皆提供資金與疫苗廠共同開發疫苗,政府應與疫苗廠簽訂預購資助合約,加速疫苗開發速度。
蔡英文總統在五二○就職典禮致詞時,特別說要組成疫苗國家隊:「這次疫情中,無論是試劑製造、或是新藥和疫苗的研發,台灣團隊都有足夠的能力,跟全球頂尖技術接軌。我們要全力扶持相關產業,打造接軌全球的生物及醫療科技產業,讓台灣成為全球克服疫病挑戰的關鍵力量。」(資料來源:【註4】)
【Reference】
「疫苗之研發、採購與安全性評估政策研議」論壇發展計畫簡介
➤議題召集人:蘇益仁教授
➤我國受限於現有法規及政治因素導致疫苗產業的發展受到限制。以流感疫苗為例,疾管署依工程會函示於流感大流行疫苗預購協議(APA)訂定「未發生大流行時,須將訂金轉換為翌年季節性流感疫苗」之採購標的向廠商進行招標,影響國外疫苗廠商參與投標意願,往往已流標告結;再加上經費短缺的緣故壓低採購價格,更是致使每年採購足量流感疫苗困難的主因之一。然而國有疫苗產業的發展卻由於疫苗開發成本金額龐大、商業利潤不比其他藥品、以及政黨輪替、政策環境等多重因素的影響,自2005年政府推動流感疫苗自製計畫以來至今進展有限。目前我國有充足且優秀的疫苗研發人力,但財源上往往依賴政府因應疫情爆發的計畫補助,一旦大流行疫情發生而不及應變,可視為國安層級問題。故加速發展我國疫苗自產能力,制定彈性適宜的國家疫苗政策,以及促進疫苗開發實為當務之急。
1. 來源
➤➤資料
∎【註1】:6/3- 衛生福利部疾病管制署「產官學研齊力開發,疫苗藥物指日可待」:https://bit.ly/2Cx978x
∎【註2】:自由時報)「專訪》高端陳燦堅︰疫苗等於國安產業 國家應領頭開發」:https://bit.ly/30YX2D8
∎【註3】:Pansci 泛科學「燃燒吧,小宇宙!疫情之下,研發疫苗大絕招有哪些?」: https://bit.ly/3eu3beA
∎【註4】:更生日報「超前部署疫苗國家隊和經濟振興國家隊」:https://bit.ly/3hR3IJm
➤➤照片
∎【註3】
∎【註5】:中央社新聞粉絲團「防治武漢肺炎新進展 長庚找到病患體內關鍵抗體」:https://bit.ly/2NvBeXX
2. 【國衛院論壇出版品 免費閱覽】
∎國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽:
http://forum.nhri.org.tw/forum/book/
3. 【國衛院論壇學術活動】
➤http://forum.nhri.org.tw/forum/category/conference/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #國民健康署 #健保署 #中央健康保險署 #五南圖書 #國家書店 #五南網路書店
#武漢肺炎 #新型冠狀病毒 #COVID-19 #Wuhan coronavirus #新興傳染病
#2019COVID19 #2019COVID19News
#疫苗研發 #財團法人國家衛生研究院 #高端疫苗 #生技力量 #國安力量 #疫苗 #國安產業 #免疫系統 #傳統疫苗 #mRNA疫苗 #DNA疫苗 #重組病毒疫苗 #類病毒顆粒疫苗 #DNA #重組病毒 #胜肽 #次單位疫苗 #奈米疫苗 #醣蛋白疫苗 #疫苗國家隊
蔡英文 Tsai Ing-wen總統 / 財團法人國家衛生研究院 / 中央研究院 / 高端疫苗 / 衛生福利部 / 國民健康署 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇 / 國光生物科技 / 亞諾法生技公司 / 台康生技 / 台康生技—新竹生物醫學園區 /
接合方法種類 在 知史 Facebook 的精選貼文
龍山文化(約公元前3000 ─ 2000年)| 知史百家
歷史春秋網
龍山文化泛指中國黃河中、下游地區約當新石器時代晚期的一類文化遺存。銅石並用時代文化,因發現於山東章丘龍山鎮而得名,距今約4350 ─ 3950年。分佈於黃河中下游的山東、河南、山西、陝西等省。大汶口文化出現的快輪製陶技術在這一時期得到普遍採用,磨光黑陶數量更多,質量更精,燒出了薄如蛋殼的器物,表面光亮如漆,是中國製陶史上的鼎峰時期。
1928年的春天,考古學家吳金鼎在山東省章丘市龍山鎮發現了舉世聞名的城子崖遺址。他在城子崖台地的西面斷層上,發掘出了與石器、骨器共存的薄胎而帶黑色光澤的陶片。這引起了當時的中央研究院歷史語言研究所考古組專家的高度重視。在此之後,考古學家們先後對城子崖遺址進行多次發掘,取得了一批以精美的磨光黑陶為顯著特徵的文化遺存。根據這些發現,考古學家於是把這種以黑陶為主要特徵的文化遺存命名為「龍山文化」。
自龍山遺址發現以來,考古學家分別在河南、陝西、山西、湖北等地發現了這一時期的文化遺存。但因其文化面貌不盡相同,所以又分別命名為河南龍山文化、陝西龍山文化、湖北石家河文化、山西陶寺類型龍山文化,通稱之為龍山時代文化。這一時期文化的最顯著的特徵便是城址的發現。如在山東地區,除城子崖龍山城址之外,還有壽光邊線王城址,陽谷、東阿、茌平三縣發現的八座城址,臨淄田旺村城址等。在河南則發現有淮陽平糧台城址、登封王城崗城址、郾城郝家台城址、輝縣孟莊城址等。
龍山文化處於中國新石器時代晚期,這個時期陝西地區的農業和畜牧業較仰韶文化有了很大的發展,生產工具的數量及種類均大為增長,快輪製陶技術比較普遍,大大提高了生產效率。同時,占卜等巫術活動亦較為盛行。從社會形態看,當時已經進入了父權制社會,私有財產已經出現,開始跨入階級社會門檻。
大部份龍山文化遺址,分佈在山東半島;而陝西、山西、河南、河北、遼東半島、江蘇、湖北等地區,也有類似遺址的發現。這個文化以許多薄、硬、光、黑的陶器,尤其是蛋殼黑陶最具特色,所以也叫它「 黑陶文化」。
龍山文化除陶器外,還有大量的石器、骨器和蚌器等。他們以農業為主而兼營狩獵、打魚、蓄養牲畜。已有骨卜的習慣。且可能已經出現了銅氣。歷史上夏、商、周的文化淵源,都可能與龍山文化有相當的聯繫。
歷史
1928年4月,當時還在清華大學上學的吳金鼎不經意注意到一條延續數米的古文化地層帶後,先後5次到城子崖實地考察,發現了大量色澤烏黑、表面光滑的陶片,這也就是日後龍山文化的代表黑陶。後來,他的老師、被人稱為「中國考古學奠基人」的李濟先生在1930年主持了城子崖遺址的第一次大規模發掘。
1930年至1931年對龍山鎮城子崖遺址的發掘,最突出的代表是造型獨特、工藝精美的黑陶,所以考古學家最初稱其為黑陶文化。不久,即被命名為龍山文化。在城子崖之前,中國出土的古陶器大都是含沙量極高的彩陶和紅陶,而以河泥為原料的黑陶可以說是4000多年前東夷民族所獨有的創造。城子崖出土的黑陶藝術品蛋殼杯杯壁只有0.5毫米厚,重量只有50克左右,是黑陶中的極品。不要說是4000多年前的古人,就是今天想要燒製出這樣成色的陶器都非常困難。
類型
1930~1931年對龍山鎮城子崖遺址進行了發掘。其下層突出地存在輪製漆黑光亮的黑陶和蛋殼黑陶,所以最初稱為「黑陶文化」,被認為是起源於東方而與仰韶文化不同系統的遺存。不久即被命名為龍山文化。1931年,梁思永在河南安陽後岡遺址,第一次發現了小屯(商代)、龍山、仰韶3種文化遺存上下依次堆積的「三疊層」,明確了三者的相對年代關係。在30年代,歸屬於龍山文化的遺址不僅有黃河中、下游的,還包括了杭州灣地區,當時根據地區差別,劃分為山東沿海、豫北和杭州灣3個區。又有人提出龍山文化是中國文明的史前期之一,並認為後岡的龍山文化是商文化的直接前驅。
1949年以後,大量的發掘和研究表明,原先的所謂龍山文化,其文化系統和來源並不單一,不能把它視為只是一個考古學文化。現在,根據幾個地區不同的文化面貌,分別給予文化名稱,以資區別。
一般的分法是: ①山東龍山文化,或稱典型龍山文化,即最初由龍山鎮定名的那種遺存。其分佈以山東地區為主。上承大汶口文化,下續是岳石文化,放射性碳素斷代並經校正,年代約當公元前2500~前2000年。 ②廟底溝二期文化。主要分佈在豫西地區。由仰韶文化發展而來,屬於中原地區早期階段的龍山文化,放射性碳素斷代並經校正,約前2900~前2800年。 ③河南龍山文化。主要分佈在豫西、豫北和豫東一帶。上承廟底溝二期文化或相當這個時期的遺存,發展為中原地區中國文明初期的青銅文化,放射性碳素斷代並經校正,約前2600~前2000年。一般還分為王灣三期、後岡二期和造律台3個類型。 ④陝西龍山文化,或稱客省莊二期文化。主要分佈在陝西涇、渭流域。放射性碳素斷代並經校正,約前2300~前2000年。 ⑤龍山文化陶寺類型,以新發現的山西襄汾陶寺遺址為代表,主要分佈在晉西南地區。放射性碳素斷代並經校正,約前2500~前1900年。目前這些文化暫多冠省名加以區別,今後通過深入對比研究,有條件的當以代表性的遺址地名單獨定名。至於30年代所稱的杭州灣區龍山文化,已經另行命名為良渚文化。
陶器特徵
中原地區早期龍山文化的陶器以灰色為主,多為手製,口沿部分一般都經過慢輪修整,部分器物如罐類還採用器身、器底分別製成後再接合的「接底法」成型新工藝。灰陶的燒成溫度約為840℃。
早期龍山文化陶器的杯、敞口盆、折沿盆、斂口罐、尖底瓶等器形還保留、繼承了仰韶文化的某些因素,而雙耳盆、三耳盆、深腹盆、筒形罐。這一時期陶器的紋飾以籃紋為主,有些陶器又在籃紋上面飾以數道甚至通身飾以若干道附加堆紋,主要原因用來加固器身。
晚期龍山文化的陶器以灰陶器為主,紅陶已佔有一定比例,黑陶器數量有所增加。灰陶和紅陶的燒成溫度均達1000℃。仍以手製為主,但輪制技術革新得到了進一步發展,部分陶器已採用模製成型。主要器形有杯、盤、碗、盆、罐、鼎、甑、器蓋、器座及新出現的鬲等。紋飾以繩紋、籃紋為最普遍,還見少量方格紋。
山東龍山文化是繼承大汶口文化的因素而發展起來的,主要分佈在山東、江蘇北部和遼東半島等處,時代距今4千多年。山東龍山文化的陶器在製法上有了很大的進步,普遍使用輪制技術。因而器型相當規整,器壁厚薄十分均勻,產量和質量都有很大提高,山東龍山文化陶器以黑陶為主,灰陶不多,還有少量紅陶、黃陶和白陶。黑陶的燒成溫度達1000℃,紅陶950℃,白陶800--900℃。黑陶有細泥、泥質、夾砂三種。細泥烏黑髮亮,學者們稱為「 蛋殼黑陶」。
蛋殼黑陶是山東龍山文化最有代表性的陶器,反映了當時高度發展的製陶業的水平。以素面或磨光的最多,紋飾較少,主要有弦紋、劃紋和鏤孔等幾種。器形較多,主要有:碗、盆、罐、甕、豆、單耳杯、高柄杯、鼎、等。還有鬲。山東龍山文化鬼臉式鼎腿、圓環狀鼎足最有特色,為其他文化所罕見。
黑陶是陶胎較薄,胎骨緊密,漆黑光亮的黑色陶器。它在龍山文化陶器中製作最為精美。黑陶在燒製時採用了封窯煙董的滲炭方法,器表呈現出深黑色光澤。它表面磨光,樸素無華,紋飾僅有少數弦紋、劃紋或鏤孔。黑、薄、光、紐為黑陶的四大特點。其中有一種薄胎黑陶,漆黑烏亮,薄如蛋殼,稱蛋殼陶,代表看這一類型陶器的傑出成就。
(本文由「歷史春秋網」授權「知史」轉載繁體字版,特此鳴謝。)
網站簡介:
歷史春秋網(www.lishichunqiu.com)成立於2010年6月,是一個以歷史為核心的文化資訊門戶網站,提供中國古代歷史、政治軍事、經濟文化、中醫養生、書畫藝術、古董收藏、宗教哲學等內容。致力於傳承國學經典,弘揚中華優秀傳統文化。
接合方法種類 在 朱學恒的阿宅萬事通事務所 Youtube 的最佳解答
本單位規劃拍攝製作過程長達四年,拍攝地點橫跨東京都、山口縣、台北、兵庫縣、巴黎的獺祭紀錄片,在大家都不能出國的時候,在這時候公開讓大家看看吧!
櫻井博志會長:【Dassai這個名字,寫成水獺祭典的「獺祭」兩個字。同時也跟中國的二十四節氣的第一個節氣有關聯。至於為什麼用這個名字,是因為我們家的地名。山口縣岩國市、周東町獺越,有川「獺」穿「越」這兩個字。獺這個漢字對日本人來說非常難寫。我身為這裡出身的釀酒人,就總想用上這個字當品牌。再加上(中國)有「獺祭魚」這個說法,就決定以這個命名了。另一個是因為正岡子規是日本文學上非常有地位的改革者、詩人。他的屋號就是用獺祭屋;更讓我想用這個名字。】
以日本知名的國宴酒著稱的獺祭,並非如同大眾所想像的一樣,是一個位在大城市中的超級酒造。事實上,旭酒造並非位在東京或大阪等大城市中,其實是位在山口縣岩國市山中的酒造。從最接近的位在周南市的新幹線德山站出發,若要到達他們在山中的總部,開車至少要四十分鐘以上。說它是一個崛起於偏鄉的企業也絕對不過分。
對於這個位在山口縣的酒造,也許大部分人的印象都還停留在獺祭這個品牌上,但事實上,櫻井一家經營酒造的時間,其實遠比媒體批露的時間要來得早。他們的先祖早在明治年間就已經開始投身這一行業。
但事實上,對於外表看來慈祥和藹的櫻井博志會長來說,繼承旭酒造和開發出獺祭這個品牌並非如同傳統的接班一樣順遂,完全是一路披荊斬棘走來的戰鬥歷程。一開始最大的挑戰,就是櫻井博志年輕時雖然待在家族企業旭酒造中,但個性剛烈的他跟父親起了非常大的衝突
櫻井博志會長:【我跟父親的關係不是那麼融洽,兩個人衝撞得很厲害。那時候,我經營了一家石材經銷商。在這石材經銷商的經驗裡,我學到最重要的事,就是品質愈好的東西愈好賣,生意才會蒸蒸日上。那時的日本酒造業界,好像幾乎沒有這種認知;廣宣打得很厲害,業務也跑得很勤,覺得好像靠品質以外的努力就賣得動。我其實不以為然。】
但等到櫻井博志的父親驟逝,他必須回來正式接班時,所面對的卻是持續衰退的清酒市場,和經營波動起伏的旭酒造。原先旭酒造的代表品牌【旭富士】在整個岩國市只能排到第四名,業績也下滑到全盛時期的三分之一。
櫻井博志面對這重重的危機,在退此一步即無死所的困境下,開始進行了全面性的改革。首先,旭酒造為了穩定產量和導入整體數據化科學化的製程概念,由冬季釀造改變成四季釀造,也就是一年四季都可以釀造生產出貨的概念。利用溫度控制、先進的自動系統來釀酒,讓產量更能夠配合市場調變,也更能夠穩定的出貨,這等於讓旭酒造的釀酒流程擺脫了手工作業的印象,變成可以量產,即時出貨,且品質穩定的產品。
另外一個重要的改革則是改變了以前委託專業的杜氏釀酒的概念,完全由公司的職員來釀酒。
二號藏工廠長三浦史也:【既有的常識裡,好酒是不可能大量生產的。但是旭酒造把大量生產好酒這件事化為可能,成功實現,並且能夠進一步大量行銷海外,讓那些覺得獺祭好喝的消費者輕鬆就能買到獺祭。能夠把好東西量產,這也是我們在生產上不可或缺的優勢。】
歷經奮鬥,多年之後,旭酒造不只在東京站穩了腳步,更開設了實體商店,成為東京這個時尚都會的一員。位在銀座最繁華五丁目的獺祭Store就正是旭酒造打贏了一場又一場戰鬥的結果。
在東京,旭酒造剛站穩腳步之後,就立刻面對必須要推出更高品質產品的挑戰。初期櫻井博志推出的是精米步合50%和精米步合45%的純米大吟釀。清酒是由米所釀造而成,米的表層有蛋白質和脂肪,在釀造時會造成不純的雜味,留下來的米心【稱為心白】,澱粉質越純,釀造的品質也越高。精米步合50%以下就可以稱為純米大吟釀,但光是磨米就必須花到四十五小時,獺祭二割三分的標準則是驚人的精米步合23%,也就是磨除酒米77%的外層,而所花的磨米時間必須花到整整七天,一百六十八個小時。而獺祭二割三分的第一次海外訂單,是西元兩千年的元月初榨,由旭酒造的社員親自護送通關,目的地則是一月三號的中華民國總統府。
櫻井博志會長:【最喜歡的……!與其說喜歡,我會說我最看重的獺祭精磨二割三分這一款。怎麼說呢,這應該是我付出最多心血的一款酒吧。在二割三分當中,我們付出了所有的技術、甚至夢想、尊嚴這些,把這些東西都賭上了,所以說我非常看重二割三分。】
親身來到旭酒造的釀酒區,你會聞到一種與其他酒造都不一樣單一而純粹的水梨香味【亦有一說是哈密瓜的清甜】。這是因為旭酒造只專注於釀造純米大吟釀以上等級的清酒,對櫻井博志會長來說,這就是一種玉不琢不成器的磨練。
櫻井博志會長:【這種香氣,就是您提到這種類似水梨的香氣,算是吟釀酒特有的香氣;也的確是因為精米步合的關係,透過更低度的精米步合才能產生這樣的香氣。我們在酒槽內投入比一般酒造更大量的酵母,而酵母在非常低溫的環境下,比一般酒造低得多的溫度下,進行長期發酵。然後也正因為在已經精米的情況下,除了葡萄糖之外,酵母攝取不到其他任何養分。所以酵母會在飢餓乾涸的狀態下,在嚴寒中、低溫,而且嚴峻的競爭環境下存活下來。在這麼惡劣的環境下,酵母不單是成長,甚至產生了代謝異常,所以才產生了這樣的香氣。另外就是我們只釀純米大吟釀,跟其他酒造的香氣明顯不一樣,所以你才會在我們家聞得到這麼純淨的好味道。】
一路拚搏奮鬥到今日,雖然清酒的市場在日本四十年間衰退到只剩三分之一,但旭酒造比起當年櫻井博志接班時搖搖欲墜瀕臨破產的狀況,光是業績就逆勢成長了一百倍。甚至因為獺祭的成功而讓全日本的山田錦酒米栽種成長超過六倍,但偏偏獺祭與傳統概念中的使用在地米釀酒完全不同,他們的酒米來源來自於日本各地,但就是沒有山口縣。因為當初連續三年,當旭酒造想要採購山田錦時,山口縣的經濟農業協同聯合組合會找盡各種理由拒絕,連旭酒造想要自己栽種山田錦,經濟連也拒絕提供穀種。走投無路之下,旭酒造才開始設法跟全日本各地的農民契約耕種山田錦。
山田錦是一種心白較多,非常適合釀酒的稻米,但也因為這樣稻穗的重量較重,容易倒伏,耕種也需要更多的技巧,不是熟悉種植酒米的農家很難快速上手。旭酒造想到的方法非常符合他們不斷突破傳統限制的精神:他們找上了科技公司富士通。
富士通株式会社秋彩事業部加納正裕:【比較大的挑戰有兩點:第一個,我們完全不知道會做出來什麼樣的成績。為什麼這樣說,是因為到目前為止以我們的實際成績來說,確實有過食用米的相關經驗,但酒米這個領域我們沒碰過,不知道能做到什麼程度。】
【秋彩系統會把生產者的農作、農家生產的數據,以及感應器所偵測而來的數據一起匯入整理。重點是讓那些老經驗的、栽培技術高超的資深農民,如何把他們的經驗轉換成數據保留下來,讓新進者能夠共享這些經驗、讓新手也能運用這些資源讓生產更容易上手,我們在往這個方向努力。】
在技術上不停尋求突破的旭酒造,在二零一七年十二月十日,又破天荒的在讀賣新聞上刊登了全版的廣告。但廣告的目的不是賣酒,而是告知全日本的消費者不要買貴了!廣告上面寫著獺祭真正的定價,跟明列出六百三十家直接合作的店家,希望大家直接用合理的價格跟這些店家購買。
櫻井博志會長:【之所以要刊這個廣告,是因為那時候獺祭非常熱門,我的營業數字也非常漂亮。但相對的,我的產能跟不上。產能跟不上的話,那些旁門左道的店家就有了哄抬價格的動作。比如跟來路不明的地方拿貨,然後轉手賣個三倍價錢,這種事時有耳聞。你要賣多貴我管不著,可是這些投機取巧的店家,根本沒有心好好照顧我的酒。不重視低溫保管,更不會冷藏,常溫的狀態下直接擺在架上、倉庫亂堆;這樣子亂搞,客人怎麼可能喝到高品質的獺祭!?對我們來說,這種行為不但讓客人喝不到我們真正想呈現的獺祭,而且也會對我們的營運產生殺傷力。就是這幾個點,讓我們決定刊登這個廣告。】
旭酒造也透過對山田錦的特A級產區,兵庫縣加東市的契約耕作,來鞏固高品質且老練的農家生產出來的山田錦酒米。加東市在多年前因為水質和有山有水的地勢以及黏土土質,被評斷為最適合生產山田錦酒米的地方。而在加東市的山中,除了有著耕種好米重要的水源,東條川的支流以及鴨川水庫之外,也有著十分清幽的南傳佛教聖地,念佛宗三寶山無量壽寺,每年重要祭典時,佛教之王堂都有數萬人聚集在此處參拜,也是當地民眾的信仰中心之一。
藤原健治 農民:【作為釀酒原料用的山田錦不同於其他食用的稻米,它的稻梗長得很高,在東北地區的氣候下容易傾倒。一般食用的稻米的稻梗比較短,有一點風吹不會傾倒。你看那邊的食用稻米和山田錦明顯不一樣吧。他們的種植方式和肥料使用量都不同。山田錦的種植很難,所以不是針對一般消費者的農產品。】
藤原健治 農民:【我現在種植稻米的面積是4丁5反(約20畝),每年的賣米所得是800萬日幣。我今年74歲,一般的上班族應該是已經退休的年紀了,他們是靠養老金生活,如果我以前去做公務員,我現在也有在領養老金可以領呀。種植稻米每年有800萬日幣的收入很好呀!當然和領高薪的上班族比可能比不了,但是我很知足了。】
旭酒造和獺祭這個品牌越挫越勇的精神,必須從他們一個又一個突破難關的紀錄中看出。平成三十年,發生了極為嚴重的西日本水災,位在山區的旭酒造雖然沒有承受直接的傷害,但持續的斷電卻對他們以0.1度C為標準管理的發酵過程造成了無法確認的影響。原先估計有超過九十萬瓶的純米大吟釀都因為發酵過程無法百分之百保證而不能掛上獺祭的品牌,必須報廢。
旭酒造株式会社 営業部長松藤 直也:【因為水災有部分製造設備受損,雖然超乎我們的預想供電等基礎設施很快恢復了運轉,但是由於水災造成停電酒廠內部分正處於發酵過程中的獺祭酒受到影響,無法以合格產品來銷售。正當我們陷入困擾不知道該如何對應時,很多熱心的人們伸出援手,其中就包括漫畫【島耕作】作者弘兼 憲史老師】
因為大水必須暫停釀造工作的旭酒造一公布要暫時停產,末端銷售網站甚至直接將獺祭零售價格上漲五倍,一場可見的屯積和價格飆升的風暴即將來臨。旭酒造一方面要面臨嚴重的損失,一方面又要面對市場上缺貨的嚴重危機。不過,反敗為勝的機會再度出現。
櫻井博志會長:【大概一個星期之後,慢慢在想,這批酒雖然已經不符合獺祭的的既定標準,好歹也還是純米大吟釀,是不是還能做點什麼努力!或者說再用個什麼別的品牌之類的;品質上我們覺得自然比不上獺祭,賣出去的話會違背我們對客人的承諾,所以在想是不是用個什麼其他形式來處理…】
【所以大概在災後第三周左右吧,我跟島耕作的原作者弘兼憲史老師聊到這個,我有這個想法,不知道老師怎麼看。他說要不我們就來個獺祭島耕作吧!有了老師的授權,整個案子很快就動起來了。】
不到一個月,旭酒造不但從天災中恢復,而且成功地化危機為轉機。每瓶售價1200日幣的獺祭島耕作每一瓶都捐出200日圓,共計一億三千萬日圓作為此次水災的捐款,六十五萬瓶一上市就被一掃而空。反而成功為獺祭這個品牌打出了更成功的公益形象。
就這樣,旭酒造從日本山口縣岩國市深山中一座搖搖欲墜的破落酒造,成長為各國元首手中的國宴酒,甚至逆勢成為日本酒的代表品牌,他們靠的並不是單純的幸運。而是一步一步,一戰一戰面對逆勢也絕不屈服的堅毅信念。未來的獺祭和旭酒造也將在父子二人的攜手之下,繼續往更高更遠的方向邁進吧。
櫻井博志會長:【一開始雖然不全然是這樣,但現在來說,日本酒對我而言,就是人生的全部了。】
櫻井一宏社長:【我父親擅長去挑戰各種新的嘗試,嘗試的開始很快,失敗時終止嘗試也是當機立斷。他通常設定幾種不同的方向,而且向著設定的方向邁進的信念非常堅定。現在的我和他相比,還有很大差距,我要更多的學習他這種風格。其實獺祭這只產品也正是在我父親的大膽快速的嘗試風格影響下經過多次的失敗和挫折後,才研發成功的產品。今後,我還要繼續堅持和模仿我父親的這種風範去嘗試更多的挑戰。在建立了這個信念的基礎上,將來我是否可以超越我父親不是我的理想目標,我在意的是如何讓獺祭變的更加美味。在追求目標的過程中,如果獺祭的品質和消費者的滿意度可以不斷提升,對我來說比起超越我的父親,能帶給消費者更多更大的快樂和享受是更有意義的結果。】
接合方法種類 在 木釘的使用方法介紹《阿倫做木工》 - YouTube 的推薦與評價
利用木釘來連結木材,讓原本細長的木材可以組成一塊較大的木板,用少少的錢,做大大的傢俱。讓木工製作更加的有彈性。有興趣跟著阿倫一起來試做看看吧 ... ... <看更多>