日本新幹線集電弓的造型設計的靈感來自貓頭鷹的羽毛~能減少高速行駛中產生的噪音
羽毛也是貓頭鷹靜音飛行的重要因素。貓頭鷹翅膀初級飛羽外緣的梳齒結構可以起到渦流發生器的作用,將流過翅膀表面的大空氣渦流「過濾」成細碎的小渦流,抑制紊流邊界層噪聲的產生;氣流經過翅膀後緣時會發生渦旋脫落分離,初級飛羽後緣的穗狀須邊可以使脫離過程變得離散,抑制渦流脫離引起的氣動噪聲;覆蓋在貓頭鷹體表的大量鬆軟絨毛具有吸聲降噪功能,能夠吸收氣流與貓頭鷹身體作用時發出的聲音,減少聲音反射。貓頭鷹體表羽毛的多級分叉結構(包括絨毛末級分叉「竹節」結構)也在氣動噪聲能量耗散方面也發揮著重要作用
貓頭鷹的靜音飛行與其飛行噪音的特性有關。貓頭鷹可以將絕大部分飛行噪聲能量控制在1600Hz以下的低頻範圍。而其獵物(田鼠等)的聽覺只對頻率在2000Hz以上的聲音敏感,獵物聽不到貓頭鷹的飛行
貓頭鷹已經掌握了安靜飛行的技巧,因此能在在毫無戒心的獵物頭上滑翔。現在,科學家們認為我們可以向貓頭鷹學習,讓我們的風力渦輪機和飛機安靜下來,而這一切都與貓頭鷹翅膀前部的鋸齒狀邊緣有關
科學家已經通過計算機模型和風洞實驗證明了,這些鋸齒可以幫助我們降低空氣穿過金屬時所產生的噪音。
來自日本千葉大學的研究小組發現,貓頭鷹翅膀前緣的鋸齒能控制湍流和流線型氣流之間的轉換,同樣的原理也可以應用在我們自己的機器上。
這項研究的帶頭人Hao Liu表示:「貓頭鷹因為擁有獨特的翅膀,可以無聲飛行而聞名於世,這些特徵通常包括了前緣鋸齒、後緣條紋,以及天鵝絨般的表面。」
「我們想了解這些特性如何影響空氣動力的產生和噪音的降低,以及它們是否可以應用於其它地方。」
研究人員將受到貓頭鷹翅膀啟發的翼形模型組合在一起,並在缺少前緣鋸齒的情況下對其進行測試。先前的研究已經突出表明了貓頭鷹翅膀的梳狀鋸齒,但研究人員始終不太了解它們的作用。
於是研究人員在一個大型的渦流模擬和低速風洞實驗中,用粒子圖像測速技術(PIV)測試了這些翼形模型。這種渦流模型是科學家用來研究氣流的標準數學模型。
事實證明,翅膀的前緣鋸齒可以被動地控制在0到20度的攻擊角度(AoA)之間,控制層流(穩定的)氣流和在機翼上表面的湍流氣流之間的過渡轉換。該攻擊角度指的是機翼的角度和氣流方向之間的關係。
換句話說,這些鋸齒對於控制空氣動力和聲音的產生是至關重要的:它們打散了撞擊在機翼上的急速氣流中的高頻漩渦,將其變成了更小、更安靜的漩渦。
科學家研究發現,力量生產和噪音抑制之間存在著一種平衡。在AoA不到15度的地方,與乾淨的鉛邊緣相比,鋸齒形的前緣降低了空氣動力學性能。
一旦這個角度超過15度——就像貓頭鷹在飛行中一樣,空氣動力性能和降噪就都會得到改善。
要把這些發現都成功地在渦輪機、飛機以及任何天上飛的東西身上付諸實踐,我們還有很長一段路要走。但是現在的研究都能為後人所借鑑。
Liu說道:「如果是應用於風力渦輪機葉片、飛機機翼或無人機旋翼,這些從貓頭鷹獲得靈感的前沿鋸齒,可以為流量控制和降噪提供有用的仿生設計。」
「比如說,當噪音問題是建造風力渦輪機的主要障礙之一時,提供一種能夠減少噪音的方法是最受歡迎的。」
風洞測試原理 在 Keyboard桑日本旅遊達人吳建盤 Facebook 的最佳解答
日本新幹線集電弓的造型設計的靈感來自貓頭鷹的羽毛~能減少高速行駛中產生的噪音
羽毛也是貓頭鷹靜音飛行的重要因素。貓頭鷹翅膀初級飛羽外緣的梳齒結構可以起到渦流發生器的作用,將流過翅膀表面的大空氣渦流「過濾」成細碎的小渦流,抑制紊流邊界層噪聲的產生;氣流經過翅膀後緣時會發生渦旋脫落分離,初級飛羽後緣的穗狀須邊可以使脫離過程變得離散,抑制渦流脫離引起的氣動噪聲;覆蓋在貓頭鷹體表的大量鬆軟絨毛具有吸聲降噪功能,能夠吸收氣流與貓頭鷹身體作用時發出的聲音,減少聲音反射。貓頭鷹體表羽毛的多級分叉結構(包括絨毛末級分叉「竹節」結構)也在氣動噪聲能量耗散方面也發揮著重要作用
貓頭鷹的靜音飛行與其飛行噪音的特性有關。貓頭鷹可以將絕大部分飛行噪聲能量控制在1600Hz以下的低頻範圍。而其獵物(田鼠等)的聽覺只對頻率在2000Hz以上的聲音敏感,獵物聽不到貓頭鷹的飛行
貓頭鷹已經掌握了安靜飛行的技巧,因此能在在毫無戒心的獵物頭上滑翔。現在,科學家們認為我們可以向貓頭鷹學習,讓我們的風力渦輪機和飛機安靜下來,而這一切都與貓頭鷹翅膀前部的鋸齒狀邊緣有關
科學家已經通過計算機模型和風洞實驗證明了,這些鋸齒可以幫助我們降低空氣穿過金屬時所產生的噪音。
來自日本千葉大學的研究小組發現,貓頭鷹翅膀前緣的鋸齒能控制湍流和流線型氣流之間的轉換,同樣的原理也可以應用在我們自己的機器上。
這項研究的帶頭人Hao Liu表示:「貓頭鷹因為擁有獨特的翅膀,可以無聲飛行而聞名於世,這些特徵通常包括了前緣鋸齒、後緣條紋,以及天鵝絨般的表面。」
「我們想了解這些特性如何影響空氣動力的產生和噪音的降低,以及它們是否可以應用於其它地方。」
研究人員將受到貓頭鷹翅膀啟發的翼形模型組合在一起,並在缺少前緣鋸齒的情況下對其進行測試。先前的研究已經突出表明了貓頭鷹翅膀的梳狀鋸齒,但研究人員始終不太了解它們的作用。
於是研究人員在一個大型的渦流模擬和低速風洞實驗中,用粒子圖像測速技術(PIV)測試了這些翼形模型。這種渦流模型是科學家用來研究氣流的標準數學模型。
事實證明,翅膀的前緣鋸齒可以被動地控制在0到20度的攻擊角度(AoA)之間,控制層流(穩定的)氣流和在機翼上表面的湍流氣流之間的過渡轉換。該攻擊角度指的是機翼的角度和氣流方向之間的關係。
換句話說,這些鋸齒對於控制空氣動力和聲音的產生是至關重要的:它們打散了撞擊在機翼上的急速氣流中的高頻漩渦,將其變成了更小、更安靜的漩渦。
科學家研究發現,力量生產和噪音抑制之間存在著一種平衡。在AoA不到15度的地方,與乾淨的鉛邊緣相比,鋸齒形的前緣降低了空氣動力學性能。
一旦這個角度超過15度——就像貓頭鷹在飛行中一樣,空氣動力性能和降噪就都會得到改善。
要把這些發現都成功地在渦輪機、飛機以及任何天上飛的東西身上付諸實踐,我們還有很長一段路要走。但是現在的研究都能為後人所借鑑。
Liu說道:「如果是應用於風力渦輪機葉片、飛機機翼或無人機旋翼,這些從貓頭鷹獲得靈感的前沿鋸齒,可以為流量控制和降噪提供有用的仿生設計。」
「比如說,當噪音問題是建造風力渦輪機的主要障礙之一時,提供一種能夠減少噪音的方法是最受歡迎的。」
風洞測試原理 在 風洞- 維基百科,自由的百科全書 的相關結果
這些問題皆可以利用幾何相似的原理,將地形、地物以縮尺模型放置於風洞中,再以儀器量測模型所受之風力或風速。一些研究也指出風洞實驗之結果與現地風場的觀測(field ... ... <看更多>
風洞測試原理 在 原理】什麼是風洞| 動手玩流體力學 - 能源教育資源總中心 的相關結果
由國立成功大學航空太空工程學系葉思沂教授教你了解風洞。 一起做實驗吧! ☆3D列印做風洞. 授權方式. 著作權所有. 回上一頁. 相關教材. ... <看更多>
風洞測試原理 在 風洞簡- Wind Tunnel - 國立中興大學水土保持學系 的相關結果
風洞 乃利用此原理,使氣流通過一管道所產生之風壓與自然風所產生之風壓具有類似之性質。 風洞內之氣流既需符合非壓縮性之原則,風速就不得超過60~90m/sec。又風洞試驗 ... ... <看更多>