〈美股盤後〉8月非農大爆冷!聯電ADR漲逾6% 道瓊標普收黑
Delta 變種病毒促使新冠疫情反撲,連帶拖累經濟復甦,繼 8 月 ADP 新增就業遠低於預期後,週五 (4 日) 美 8 月非農就業數據亦大爆冷,促使美元下跌、黃金上漲、十年期美債殖利率攀升,道瓊、標普指數均出現小幅下跌。
蘋果、Nvidia 等科技股支持下,那指週五微幅收紅 0.21%,創 2021 年第 35 個收盤新高記錄。那指本週上漲 0.21%,標普週漲幅為 0.6%,道瓊週跌 0.24%。
數據方面,美國勞工部週五 (3 日) 公布 8 月非農新增就業 23.5 萬人,遠遜市場預期,創今年 1 月以來最差表現,失業率則降至疫情爆發以來新低,報 5.2%,符合市場預期。
聯準會 (Fed) 主席鮑爾曾多次強調,Fed 開始縮減購債 (Taper) 前,需要看到有更強勁的就業數據,而令人失望的非農就業報告可能會改變 Fed 對 QE 退場時間的預期。
政經消息方面,參議院民主黨議員曼欽 (Joe Manchin) 週四要求對美國總統拜登的經濟議程「按下暫停鍵」,戰略性擱置 3.5 兆美元的預算法案,因為他希望優先關注高通膨、阿富汗撤軍造成的國家不確定等議題。
對此,美國總統拜登週五敦促國會通過 3.5 兆美元的預算案和 1 兆美元的跨黨派基礎建設法案,以推動美國經濟成長,創造良好的就業機會。
拜登強調,美國正試圖走出新冠陰霾之際,這些投資不是短期刺激,最主要的是創造美國長期繁榮。
週五外媒引述消息人士報導,民主黨員正考慮一系列針對企業或富人徵稅的提案,包括對企業高管、庫藏股等項目徵稅,旨為一項涵蓋從兒童保育、教育和其他社會項目等各方面的 3.5 兆美元預算案買單。
新冠肺炎 (COVID-19) 疫情持續蔓延全球,截稿前,據美國約翰霍普金斯大學 (Johns Hopkins University) 即時統計,全球確診數已飆破 2.19 億例,死亡數突破 454 萬例。美國累計確診超過 3964 萬例,累計死亡數超過 64.4 萬。印度累計確診超過 3290 萬例,巴西累計確診 2083 萬例。
週五 (4 日) 美股四大指數表現:
美股道瓊指數下跌 74.73 點,或 0.21%,收 35,369.09 點。
那斯達克上漲 32.34 點,或 0.21%,收 15,363.52 點。
標普 500 指數下跌 1.52 點,或 0.03%,收 4,535.43 點。
費城半導體指數上漲 19.6 點,或 0.57%,收 3,430.9 點。
標普 11 大板塊僅 5 大板塊收紅,資訊科技、通訊服務和醫療保健板塊領漲,公用事業、材料和工業板塊領跌。(圖片:finviz)
標普 11 大板塊僅 5 大板塊收紅,資訊科技、通訊服務和醫療保健板塊領漲,公用事業、材料和工業板塊領跌。(圖片:finviz)
焦點個股
科技五大天王僅微軟收黑。蘋果 (AAPL-US) 漲 0.42%;臉書 (FB-US) 漲 0.26%;Alphabet (GOOGL-US) 漲 0.32%;亞馬遜 (AMZN-US) 漲 0.43%;微軟 (MSFT-US) 跌 0.0033%。
道瓊成分股多收黑。美國運通 (AXP-US) 下跌 1.70%;波音 (BA-US) 下跌 1.20%;Honeywell (HON-US) 下跌 1.13%;沃爾格林聯合博姿 (WBA-US) 跌 0.95%;Salesforce (CRM-US) 上漲 1.11%。
費半成分股多收高。英特爾 (INTC-US) 跌 0.41%;AMD (AMD-US) 漲 0.66%;應用材料 (AMAT-US) 上漲 1.03%;美光 (MU-US) 跌 0.24%;高通 (QCOM-US) 跌 0.34%;NVIDIA (NVDA-US) 漲 2.00%。
台股 ADR 盡揚。台積電 ADR (TSM-US) 上漲 2.63%;日月光 ADR (ASX-US) 上漲 1.81%;聯電 ADR (UMC-US) 大漲 6.38%;中華電信 ADR (CHT-US) 持平。
企業新聞
蘋果 (AAPL-US) 上漲 0.42% 至每股 154.30 美元,續寫歷史新高紀錄。諸如 Wedbush 等多家華爾街投行預測,蘋果 iPhone 13 將迎來強勁的市場需求。
Nvidia (NVDA-US) 上漲 2.00% 至每股 228.43 美元。由於 Nvidia 不斷增長的資料中心和軟體領域,Jefferies 將該公司目標價從 233 美元大幅上修至 260 美元。
威騰電子 (WDC-US) 下跌 0.37% 至每股 61.41 美元。快閃記憶體大廠鎧俠傳出有意重啟 IPO 計劃,而非與威騰電子 (WDC-US) 進行股權合併,與此同時,日本經濟產業省對威騰電子併購鎧俠的態度似乎正軟化。
滴滴 (DIDI-US) 上漲 2.38% 至每股 9.02 美元,本週其漲幅近 10%。市場傳出北京市政府提議讓國企入股滴滴。消息人士透露,北京市文旅業巨頭首旅集團旗下子公司首汽集團將聯合其他國企,參與對滴滴的入股等工作。
特斯拉 (TSLA-US) 收漲 0.16% 至 733.57 美元。儘管來自福特、通用汽車和豐田的電動汽車湧現,方舟投資 (Ark Invest) 創辦人伍德 (Cathie Wood) 持續看多特斯拉,她認為特斯拉目標價上看每股 3,000 美元,主因是特斯拉市占率自 2017 年起持續大幅提升。
經濟數據
美國 8 月新增非農就業報 23.5 萬人,預期 78.7 萬人,前值自 94.3 萬人上調至 105.3 萬人
美國 8 月失業率報 5.2%,預期 5.2%,前值 5.4%
美國 8 月平均每週工時報 34.7 小時,預期 34.8 小時,前值 34.8 小時
美國 8 月平均每小時薪資年增率報 4.3%,預期 4.0%,前值 4.0%
美國 8 月平均每小時薪資月增率報 0.6%,預期 0.3%,前值 0.4%
美國 8 月勞動參與率報 61.7%,前值 61.7%
美國 8 月 Markit 服務業 PMI 終值報 55.1,預期 55.2,前值 55.2
美國 8 月 ISM 非製造業 PMI 報 61.7,預期 62.0,前值 64.1
華爾街分析
State Street Global Advisors 策略師 Michael Arone 表示,非農數字令人非常失望,很明顯,Delta 變種病毒對今夏經濟產生負面影響。
Michael Arone 稱,休閒與飯店業沒有增加任何工作淨新增就業為零,而零售業和餐飲業分別大幅裁員。投資者將得出結論,也許這將使 Fed 進一步推遲縮減購債的時間,市場可能對此沒有意見。
ZEGA Financial 執行長 Jay Pestrichelli 表示,最終,疲軟的就業報告將減輕 Fed 縮減市場支持力度的壓力。對投資者來說,這可能是好消息,至少在短期內是這樣。
https://news.cnyes.com/news/id/4716785?exp=a
【全球股市觀察站】2021-09-03(美國時間)
阿斯匹靈實戰文章
https://scantrader.com/u/9769/service
阿斯匹靈IG
https://www.instagram.com/aspirin_grandline/?hl=zh-tw
同時也有1部Youtube影片,追蹤數超過167的網紅李俊俋,也在其Youtube影片中提到,1.基於我國現行法制規定,中選會乃屬獨立機關性質,故應依法獨立行使職權,不受其他機關監督指揮,與公投審議委員會為行政院內部機關性質不同,故而在102年審查預算時,將中選會對於執行公投審議委員會之預算予以刪除。然而,中選會竟以違反預算法第22條規定,向行政院申請動用第二預備金,顯然無視立法院審查預算之...
「合併執行算法」的推薦目錄:
合併執行算法 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
AI加值智慧製造 鋼鐵傳產乘浪而起
芮嘉瑋/專欄 2021-01-28 02:45
2020年面對COVID-19(新冠肺炎)的襲擊,疫情籠罩之下各行各業幾乎空轉一年,投資購買設備及原料的腳步也都放緩,預期新的一年,隨著疫情穩定與經濟復甦,許多企業勢必加速添購設備和增加庫存料,鋼材需求可望隨著市場回升而轉強,且至少旺到第2季。
舉例來說,在汽車的構造上,有相當高的比例是使用鋼板,包括車門、引擎蓋、後車箱、底盤、車頂等,所以汽車業的好壞,間接影響了鋼材的需求。這2年汽車上游原材料反應了因電動車興起所展開的換車潮,從而鋼市好轉、鋼價高漲,幾乎各國都是如此。
隨著消費型態轉變,產品生命週期縮短,各行各業面臨客製化的挑戰,並在智慧工廠生產流程的訴求下,往往需要智慧機械、智慧製造設備以從事更複雜的生產工作,鋼鐵傳產業也不例外。然而,現有機器人或製造機台受限於原本功能單一又無法擴充的窘境,必須藉由人工智慧、物聯網、大數據等各種新興技術多元化功能的整合,以利製造業數位轉型升級,因應瞬息萬變的市場挑戰,凸顯「智慧製造」的概念是企業轉型升級的唯一出路。
何謂智慧製造?
經歷4次工業革命的演進,第4次工業革命被視為「工業4.0」,且因智慧製造是工業4.0的核心部件,在製造產業兩者幾乎可劃上等號,從而「工業4.0」常被稱為「智慧製造」。
在工業4.0的時代驅動下,現今製造業不斷與數種新興技術結合,從而工業4.0被定義為「製造技術中整合了網路安全(cybersecurity)、擴增實境(AR)、大數據、自主機器人(autonomous robots)、積層製造(additive manufacturing)、模擬(simulation)、系統整合(system integration)、雲端運算(cloud computing)和物聯網等技術使之具有自動化、聯網、數據交換以及智能工廠所需功能的系統平台」 。
因此,智慧製造實際上需要整合以上所述之各種關鍵領域技術的同步發展以建構出相應的產業生態體系,並在生產過程的每一個環節都能達到高度自動化、客製化與智慧化的先進製造模式,使生產環境具備自我感知、自我學習、自我決策、自我執行以及自我適應的能力,以適應快速變化的外部市場需求。
如何利用AI加持智慧製造
由於智慧製造包括連網(connection)、轉化(conversion)、虛擬(cyber)、認知(cognition)和自我配置(configure)等能力 ,其中利用機器學習、深度學習等AI技術使機器具備自我診斷並即時做出判斷的認知能力,就是AI之所以成為智慧製造核心技術之所在,它可以從大量原始數據中自動提取關鍵特徵及製造業中規律性的模式,進而學習過往曾經發生過的錯誤,以提前作預測及預警,藉此不僅可降低停機時間、提升製程效率,也可適時的根據產線作調整。
至於該如何利用AI加持智慧製造,讓我們看看國內鋼鐵龍頭中國鋼鐵股份有限公司(簡稱中鋼公司),在其智慧生產技術中導入AI實現智慧製造的專利布局,提供製造業者掌握AI加值智慧製造,讓工廠轉型升級邁向智慧工廠。
中鋼發明一種透過人工智慧演算模組在生產製程中進行估測及控制的系統(TWI704019),具體而言,係透過人工智慧演算模組所產生的估測鋼帶翹曲模型對鋼帶翹曲量進行估測,而該人工智慧演算模組係利用機器學習模組、深度學習模組或者使用一雲端伺服器模組評估該製程參數及該翹曲量。
該專利提供一種包含熱浸鍍鋅設備100、矯正機構130、感測模組150、人工智慧演算模組160以及最佳化演算模組165的熱浸鍍鋅鋼帶翹曲量估測系統。其中,該人工智慧演算模組160連接該感測模組150及該熱浸鍍鋅設備110,用以收集且評估該熱浸鍍鋅設備110中諸如產線速度、張力、鋼帶鋼種、鋼帶寬度、鋼帶厚度、鋼帶剛性等製程參數及翹曲量,進而可產生估測鋼帶翹曲模型,且該估測鋼帶翹曲模型包含一矯正干涉量,用以供矯正機構130矯正鋼帶。
經過大量數據的累積,該估測鋼帶翹曲模型還可以包含來自該最佳化演算模組165的製程參數最佳值,當類似或相同的製程參數(例如類似或相同鋼種)的鋼帶需要進行熱浸鍍鋅時,該估測鋼帶翹曲模型就會顯示諸如最佳張力、最佳產線速度、最佳矯正干涉量等製程參數最佳值,供操作者參考,從而獲得翹曲量最少且鍍鋅厚度一致的鍍鋅鋼帶。
再者,由於一般的鋼捲產品需要經過諸如煉鋼、熱軋和冷軋等許多生產階段,為了讓產品的機械性質符合預定的規範,過去往往依賴人為經驗調整生產階段的製程參數,然而,人為經驗難以即時反應生產線狀況,中鋼就此發明一種適用於一軋延系統之製程參數的調控方法(TWI708128),當執行完一部分的生產階段以後,可以即時地計算下一個生產階段的製程參數,其中之製程參數的調控方法包括根據歷史資料建立一機器學習模型,後續並將測試資料輸入至機器學習模型以預測目前產品的機械性質等步驟。
在該專利之軋延系統的運作流程示意圖中,在步驟220,可根據這些歷史資料來建立一個機器學習模型221,此機器學習模型221是要根據生產參數來預測產品諸如拉伸強度、降伏強度和伸長率等的機械性質,換言之在訓練階段中生產參數是作為機器學習模型221的輸入,機械性質則作為機器學習模型221的輸出。機器學習模型221可以是卷積神經網路、支持向量機、決策樹或任意合適的模型。
在步驟230,對目前在線上的產品執行部分的生產階段。在步驟240中,將測試資料輸入至機器學習模型221以預測目前產品的機械性質,並判斷所預測的機械性質是否符合一規範。在步驟250中,依照預設生產參數進行下一個生產階段。
如果步驟240的結果為否,則執行一搜尋演算法以取得最佳的生產參數,並據此實施下一個生產階段(步驟260)。其中,執行搜尋演算法以取得調控後參數的步驟包括:設定一利益函數;將尚未完成生產階段的可調控參數與線上資料合併後輸入至機器學習模型以取得預測機械性質,並根據利益函數計算出預測機械性質的誤差值;以及取得最小誤差值所對應的可調控參數以作為調控後參數。
此外,中鋼亦發明一種設備監診方法(I398629),係在設備故障監診分析流程的邏輯下導入類神經網路(neural network)之人工智慧,以便在決策分析時有效解決故障類型分類方面問題。
給台灣製造業的建議與展望導入AI技術、配合感測器收集各類數據以及大數據分析進行諸如產線異常診斷或品質監控,以維持機器正常運作無虞是智慧工廠有效運作的基礎。然而,智慧製造除了藉由智慧機械建構智慧生產線、透過雲端和物聯網分析資料、AI自主監測診斷調整產線產能之外,虛實整合系統(或稱網路實體系統,Cyber-physical systems)也是構成工業4.0創建智慧製造所需的功能之一,整合物理模型、感測器資料和歷史數據,在虛擬空間即時模擬呈現生產狀態,透過遠程監視或跟踪與工廠現有的資訊管理系統緊密整合,建立完整資訊生態系統才能透過AI即時彙整資訊進行決策。
未來製造業仍將是全球產業不可或缺的一環,隨著工業4.0的蓬勃發展,台灣製造業在邁向智慧製造過程中,所有智慧化的步驟都需要運用AI來執行分析、診斷、預測或決策等工作,欣見國內鋼鐵龍頭已率先落實AI加值智慧製造,然而若能整合虛擬(Cyber),強化與工業物聯網之整合,更可提升透過AI提高組織運作效率及效能的目的。
過去製造業藉由大量生產與低價競爭已非決勝關鍵,如何協助國內產業在後疫情時代轉型升級,是當前的重要議題。持續強化在地製造業與資訊業領域的技術整合優勢,透過機器學習、類神經網路或深度學習等AI技術的導入,並與使用者/消費者連結形成完整的製造服務體系,將可望從傳統製造體系中依賴人為經驗、人力需求及規格一致的常態,轉換為自動化、客製化、智慧化和靈活彈性化的智慧製造。本文以鋼鐵龍頭之典範轉移為例,以期台灣所有製造產業均應具備智慧製造的軟硬實力,才能持續在全球製造體系中發光發熱。
附圖:鋼帶翹曲量估測及控制系統結構示意圖。芮嘉瑋
台灣專利號I708128之軋延系統的運作流程示意圖。芮嘉瑋
資料來源:https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&cat=140&id=0000602586_r1c6gnef7wl2247ink60m
合併執行算法 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
汽車軟體深度報告:汽車軟體產業鏈及未來趨勢分析
北京新浪網 10-01 20:00
來源:未來智庫
關鍵結論
電動智能趨勢下,汽車逐步由機械驅動向軟體驅動過渡。近年 SDV(軟體定義汽車)概念逐步被行業認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電 動化帶來的汽車電子構架革新,汽車硬體體系將逐漸趨於一致,軟體成為定義 汽車的關鍵,行業更具想像空間。即造車壁壘已經由從前的上萬個零部件拼合 能力演變成將上億行代碼組合運行的能力。本文通過對汽車軟體行業的系統性 梳理,幫助讀者把握行業成長中的投資機會。
我們提出零部件賽道三維篩選框架,基於起點(單車價值量)-持續時間(產品生 命周期)-斜率(產品升級速度)三維體系評價細分零部件的市場空間,軟體平均單車價值量由傳統車的 200 美元,提升至 2025 年新能源汽車的 0.23 萬美元,進 一步至 2025 年新能源汽車的 1.8 萬美元。未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間,57%的增量來自於 ADAS 及 AD 軟體。
軟體如何定義汽車價值?百年汽車工業面臨由機械機器向電子產品過渡的新變 局。汽車「駕駛感」及車機 APP 化的功能實現發生在我們看不到的隱秘角落— —上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。
汽車軟體成為未來汽車構架重要組成部分。而整車電子電氣構架提供的硬體、 操作系統實現的管理功能、基礎軟體平台構架實現的抽象化為 SDV 不可或缺的 三大關鍵部分,軟硬體的分離(研發分離、功能發佈分離)成為實現 SDV 基礎。
發展史與整車廠戰略。汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發 動機控制演算法→1980 年代中央計算單元創新→1990 年代信息娛樂系統創新→ 2000 年代安全系統→2010 年代開始向全新汽車電子構架及軟體系統演變。不 同於以前依靠多個 ECU 由部件供應商主導的無獨立軟體產品概念時代,主機廠 愈發需具備軟體的管理能力及核心軟體設計能力。整車廠中特斯拉引領車載軟 件行業最高技術,大眾重金重塑軟體架構,整車廠關乎開發周期、賦予附加值、 構架實現、軟體變現模式以及操作系統切入等問題上仍未進行標準化定義,卻 為影響行業發展的關鍵所在。
產業鏈機遇。新科技、軟體公司湧入帶動供應鏈管理的扁平化、邊界模糊化, 帶動供應鏈生態體系變革。供應模式上,預計 Tier1 與整車廠之間將採取兩種合作方式,其一,整車廠主導軟體,Tier1 負責硬體生產;其二,整車廠定義軟 件框架規範標準,Tier1 供應符合標準的相關軟體。盈利模式上,偏向製造業邏 輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業穩態階段,往 介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由於迭代周期快 且行業特性帶來的標準化程度低,賦予汽車新盈利模式。現階段特斯拉三大付 費模式打開車企軟體變現想像空間,開發基礎平台收許可費、供應功能模塊按 Royalty 收費及定製化的二次開發均為未來軟體供應商主流打法。
推演的 5 大未來趨勢。汽車終將成為搭載「差異化元素」的通用化平台。一方 面,ECU 功能模塊里循環迭代的代碼驅動汽車執行動作反饋;另一方面,車載 娛樂信息系統 APP 化吸引第三方開發者入場。海量數據將在車內流轉,關於賦 能域控制器、定位車機系統的各項軟體性能升級,包括功能中心化、乙太網應 用、整車 OTA 升級、信息交互上雲及深層次的信息安全防禦等,或將帶來汽車 軟體一系列發展機遇。
SDV 新階段:軟體如何定義汽車價值
百年汽車工業面臨由機械機器向電子產品過渡的新變局。跨入駕駛室,安靜的 啟動、柔中帶剛的加速、平穩過渡的剎車等為代表的汽車「駕駛感」逐步由機 械驅動向軟體驅動過渡,這一套功能的實現發生在我們看不到的隱秘角落—— 上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。近年來,SDV(Software Define Vehicles,即軟體定義汽車)概念逐步被整車 廠認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電動化帶來的汽 車電子構架革新,汽車硬體體系將逐漸趨於一致,整車廠很難在硬體上打造差 異化,此時軟體成為定義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件 拼合能力演變成將上億行代碼組合運行的能力。
汽車軟體為未來汽車構架重要組成部分
汽車軟體與硬體體系發生分化。近幾十年隨汽車構架升級、性能與用戶操作感 需求逐年提升,汽車軟硬體數量爆發,並愈發複雜化。在硬體方面,電控單元 數量迅速增長,於 2010 年面臨增速放緩的拐點(主要受整車成本與控制器數 量平衡的影響),2025 年隨行業集中式電子電氣架構趨勢持續推進,電控單元 邁向集成化從而控制器數量將較為平穩。在軟體方面,各大主機廠軟體功能體 系越做越大,其中「功能函數」作為軟體體系中的最小單元,其單車數量持續 增大,控制器內部的功能函數複雜度提升,疊加智能座艙新增的應用型軟體需 求,軟體重要性愈發凸顯。2010 年(增速放緩的硬體數量 VS. 急劇攀升的軟 件數量)與 2025 年(硬體產業成型 VS.軟體加速迭代塑造汽車差異性)為汽車 軟硬體發展中兩個重要的分水嶺。
汽車複雜的運作需軟硬體結合進行。無論是駕駛艙對汽車電子功能的調用,抑 或汽車與駕駛員和環境互動,均可抽化為軟硬體密切配合的模型,即駕駛員的 需求與汽車功能反應之間存在著複雜的控制鏈條:駕駛員通過機械硬體或部分 虛擬按鈕輸入期望(例如通過車載按鈕、踏板等輸入型機械硬體給出期望)→ 駕駛員動作轉換為電子信號傳入電控單元→執行器控制控制對象達到駕駛員的 需求→感測器向電控系統持續反饋控制達成的具體情況,軟體邏輯持續運算向 執行器發出指令,最終達成駕駛員的期望要求。以剎車輔助駕駛為例,在駕駛 員剎車信號不足或過慢的情況下,內置的一套軟體邏輯將被激活,讓制動系統 自動做出減速相應。在電控單元中快速進行的一次次軟體迭代循環,為汽車正 常運作的基石。
SDV 研發工具鏈仍以 V 流程為主。汽車研發系統過程能拆解為軟體、硬體、執 行器及感測器 4 大部分。與傳統車相同,V 模型為車企主流的開發流程,從產 品設計、子系統設計、控制器驗證及系統驗證等階段均有相對應的工具鏈進行 支撐,涵蓋從系統到軟體以及集成后的一系列測試等內容。SDV 模式下對工具 鏈的應用具部分變化:一方面,硬體愈發通用化,研發會集中在作為功能集群 的 ECU 開發上;另一方面,車的各種功能實現盡量靠軟體實現。
Step 1:產品設計階段。此階段核心為分析和拆解需求。由消費者的需求、車 型安全及性能的剛性需求以及法律法規需求定義出軟體的基礎構架,以及定義 出各大功能模塊。
Step 2:子系統設計階段。步驟為由系統構架需求定義軟硬體構架設計。關乎 軟體系統部分在這一步雛形初顯,能將技術問題具體化,例如定義軟體能實現 的功能、軟體功能模塊的分離、如何跟對應的控制器配合等。
Step 3:控制器驗證階段。完成硬軟體及控制器集成,代碼成型并迭代測試。
Step 4:系統驗證階段。測試軟硬體在整車上的裝載使用情況。
SDV不可或缺的三大關鍵部分——電子電氣架構、操作系統、軟體平台
整車電子電氣構架為硬體基礎。汽車電子電氣架構(Electronic and Electrical Architecture,文中簡稱 EEA)最初由德爾福公司提出,以博世經典的五域分類 拆分整車為動力域(安全)、底盤域(車輛運動)、座艙域/智能信息域(娛樂信 息)、自動駕駛域(輔助駕駛)和車身域(車身電子)等 5 個子系統。後續演變 成車企所定義的一套整合方式,可形象看作人體結構中的骨架部分,後續需要 「器官」、「血液」和「神經」進行填充。具體到汽車上來說,EEA 把汽車中的 各類感測器、ECU(電子控制單元)、線束拓撲和電子電氣分配系統完美地整合 在一起,完成運算、動力和能量的分配,實現整車的各項智能化功能。博世曾 經將汽車電子電氣架構劃分為三個大階段:傳統分散式電子電氣架構-域控制器 電子電氣架構-集中式電子電氣架構:
(1)傳統分散式的電子電氣架構:主要用在 L0-L2 級別車型,此時車輛主要由 硬體定義,採用分散式的控制單元,專用感測器、專用 ECU 及演算法,資源協同 性不高,有一定程度的浪費。產業鏈分工上,車型架構由整車廠定義,實現核 心功能的 ECU 及其軟體開發由 Tier 1 完成。
(2)域控制器電子電氣架構:從 L3 級別開始,通過域控制器的整合,分散的 車輛硬體之間可以實現信息互聯互通和資源共享,軟體可升級,硬體和感測器 可以更換和進行功能擴展。屬於過渡形態,ECU 仍承擔大部分功能實現,整車 廠將參與部分域控制器的開發。
(3)集中式電子電氣架構:以特斯拉 Model 3 領銜開發的集中式電子電氣架構 基本達到了車輛終極理想——也就是車載電腦級別的中央控制架構。此時集成 化趨勢將消減大部分 ECU,主機廠將逐漸主導原本屬於 Tier 1 參與的軟體部分 (預計以直接開發模式或定義規範標準后讓供應商參與),其目標是設計簡單的 軟體插件和實現物理層變化的本地化。
操作系統實現管理功能。車載操作系統(Car-OS)承擔著管理車載電腦硬體與 軟體資源的程序的角色。20 世紀 90 年代伊始,汽車上基於微控制晶元的嵌入 式電子產品的應運興起,需加入相關的軟體架構以實現分層化,即汽車電子產 品均需要搭載嵌入式操作系統。從產品品類上,汽車電子產品可歸納為兩類, 一是以儀錶,娛樂音響、導航系統為代表的車載娛樂信息系統;二是主管車輛 運動和安全防護的電控裝置。兩者對比而言,電控系統更強調安全性和穩定性, 因此應用於電控單元 ECU 的嵌入式操作系統標準更為嚴格。未來操作系統發展 面臨兩大趨勢,一是以 OSEK、AUTOSAR 為典型代表的操作系統標準聯盟將 定義統一的技術規範;二是智能網聯趨勢下數據融合度提升,由於各個部件的 安全標準等級不一從而整車上存在多種操作系統的運用,通常引入虛擬機管理 (可提供同時運行多個獨立操作系統的環境),如在智能座艙 ECU 中同時運行 Android(車載電子操作系統)和 QNX(電控操作系統)。
基礎軟體平台構架是實現抽象化的關鍵所在。從定義上,軟體架構為軟體系統 定義了一個高級抽象(軟體表達行為、屬性、相互作用、集成方式及約束均在 此架構上體現)。而 SDV 核心內涵是能夠通過軟體作用,動態地改變構架網路 節點之間的聯結或分離狀態,從而定義汽車不同的功能組成。基礎軟體平台需 具備三方面要求:一是可靠性,能保證汽車功能實現的實時和安全;二是通用 性,適用於不同車型和不同的操作系統上;三是網構架節點易於更換聯結方式。AUTOSAR 是全球各大整車廠、供應商聯合擬定開放式標準化的軟體架構,其 使得不同結構的電子控制單元的介面特徵標準化,從而軟體具更優的可擴展性 及可移植性,降低重複性工作,縮短開發周期。
汽車軟硬體分離為 SDV 基礎
軟硬體的分離涵蓋研發分離、功能發佈分離兩方面。軟硬體分離為實現 SDV 基 礎,電動化趨勢簡化造車流程,未來汽車硬體的研發、製造更偏向於流水線過 程,而軟體發展逐步具互聯網的快速迭代趨勢傾向。汽車軟硬體分離概念由此 而生,其包含兩方面內容,一方面,由於開發周期(汽車硬體 5-7 年的開發周 期 vs. 軟體 2-3 年的開發周期)及技術領域(偏向製造業 vs.偏向互聯網)的 差別,汽車軟硬體在開發上、供應上逐漸分開。另一方面,軟體的功能發佈可 以與車型完成分離,新軟體不僅適用於新車,仍可快速發佈到已量產車型上, 增強車型硬體的使用長尾期。
軟硬體分離在功能升級及工藝裝配上具優勢。基於軟硬體分離的新構架體系在 車型功能升級及製造模式上發生變化。功能升級上,新的擴充功能由軟體定義 通過雲端直接升級,無需再在硬體層面進行驗證;工藝製造上,與軟體分離后 的電子電氣構架不同於現階段「八爪魚」式的複雜構造,更易於自動化裝配。
當前車企實現更新的方式——硬體冗餘,後續依靠更新升級。
(1)硬體預置:傳統汽車定價由硬體及性能決定。而 SDV 模式下,相同硬體 的車型通過不同的軟體配置決定車與車之間不同的功能與體驗。車企在車型設 計之初需提前定義軟硬體,SOP 時將具備擴展功能的冗餘硬體預裝,後續將通 過付費型軟體升級或者功能開放回收成本。以特斯拉的 AutoPilot 為例,冗餘的 預設硬體將通過後期持續的軟體升級調動功能,為新創收模式。
(2)性能預置:性能預置分為兩個方面,控制器算力預留,為更多的軟體功能 和演算法預留空間。隨智能駕駛趨勢,車載算力大幅提升,由於無法預估後續所 需算力的極限,通常在實際情況中會預留算力空間。性能預留,通常在各性能 硬體上做事先預留,以應付如加速性能提升,續航里程提升,圖像的清晰度提 升,音響效果提升等升級事項。例如 2018 年 6 月,美國權威雜誌《消費者報 告》發現, Model3 剎車距離比皮卡福特 F-150 要長。ElonMusk 接受了《消 費者報告》的批評並承諾通過 OTA 儘快解決此問題。此後在不到一周時間, 特斯拉通過一次 OTA 升級解決了該個問題,《消費者報告》重新測試后發現, 升級后的 Model3 剎車距離縮短了 5.8 米。
追溯發展史:汽車軟體的前世
汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發動機控制演算法(軟體嵌 入應用模式)→1980 年代中央計算單元創新(顯示車輛基本信息)→1990 年 代信息娛樂系統創新(GPS、自適應巡航控制出現)→2000 年代安全系統(出 現高級駕駛員輔助駕駛概念)→2010 年代開始向全新汽車電子構架及軟體系統 演變(電子化和軟體化,出現無人駕駛概念)。
1980 年代之前,汽車僅搭載車燈、啟動機、火花塞等簡易電子設備,並未運用 任何軟體部分。整車電子設備通信及電能供給依靠銅導線傳輸。部分豪華車裝 置僅由收音機為核心部件的車載娛樂系統。
1970 年代,發動機系統具備演算法功能。出現點火系統、電子燃油噴射等裝置, 軟體直接嵌入應用使用,軟體之間無關聯具獨立性。
1980 年代隨 IT 技術起步,電子電氣化革命在傳統機械部件上進行創新。油耗 及行駛距離等信息可在車內做電子化顯示,搭載軟體的電控單元開始出現,如 防抱死系統 ABS、車輛穩定系統 ESP、電子變速箱等電子系統誕生,新功能由 嵌入式軟體的演算法控制,CAN 及 LIN 匯流排解決不同控制器之間的通信問題。
1990 年代,信息娛樂系統持續創新,軟體成為汽車重要部分。汽車軟體構架愈 發分散,出現 GPS 及自適應巡航控制等較高階的電子組件及軟體。同時,不同 控制器間持續延長的通信匯流排成為車企後續進行成本管控的重要一環。
2000 年代,安全系統推出,軟體開始主導汽車創新。「高級輔助駕駛概念」在 此階段興起,例如駕駛員未及時反應的障礙物可以系統運算下汽車自發停車規 避。此時的軟體系統更為高階,行業引入 AUTOSAR 標準軟體構架。車型方面, 電子化特徵明顯,賓士 S 級轎車車型電控單元超 80 個,通信匯流排近 2000 條。
2010 年開始,汽車電動化帶來電子電氣構架、汽車軟體新變局。智能駕駛、車 聯網概念引入,造車新勢力、互聯網企業等多玩家參與進造車環節,以特斯拉 為代表的整車廠重新定義軟體系統,新創 OTA 新升級模式。
產業鏈機遇:SDV重塑市場格局
新科技、軟體公司的湧入帶動了供應鏈管理的扁平化、邊界模糊化,推動產業 競爭要素髮生本質變化,帶動供應鏈生態體系變革。在傳統封閉式供應鏈的汽 車製造商在整條供應鏈中只負責一個環節,主要擔任汽車研發製造的角色。而 在新生態體系中,汽車軟硬體分離重塑產業格局,主機廠、供應商以及互聯網 企業均參與進汽車新生態體系,從汽車全生命周期覆蓋整個產業鏈條。
供應模式轉變,主機廠、供應商及互聯網企業入局
SDV 軟體開發模式下,不同於以前依靠多個 ECU 由部件供應商主導的無獨立 軟體產品概念時代,主機廠愈發需具備軟體的管理能力及核心軟體設計能力, 並引入供應商及互聯網企業參與此環節。在軟體領域,預計未來 Tier1 與整車 廠之間將採取兩種合作方式:
其一,整車廠主導整車軟體部分,Tier1 負責硬體生產。在傳統車企巨頭入場燃 油車領域 100 多年的歷史里,造車流水線仍以機械製造為主,Tier1 以分擔主機 廠重資產角色存在,通常與整車廠車型生產周期形成相應配套。而在智能化時 代,軟體主要以輕資產模式運轉,出於掌握核心技術考量通常為主機廠所主導。其二,整車廠定義軟體框架規範標準,Tier1 供應符合此標準的相關軟體。瞬息 萬變的技術導致車企研發容錯率下降。尤其對新入場的造車勢力而言,若在前 1~2 款車連續失敗,大概率將面臨淘汰。因此對部分在技術儲備、研發及資金 實力較弱的主機廠而言,可在其定義軟體標準後由 Tier1 進行對應的開發配套。
盈利模式轉換,將逐漸由硬體逐漸向軟體傾斜
硬體發展具天花板效應,軟體持續賦予車型新附加值。以經過 15 年發展的手機 產業鏈為例,硬體體系隨處理器性能持續提升、攝像頭像素及攝像頭個數持續 增加、屏幕材質與大小升級,其產業增速趨緩,硬體盈利模式逐漸固化。而隨 蘋果 iPhone 產品橫空出世定義軟體附加值新模式,小米做低手機硬體利潤並將 其定位於功能載體,至此軟體與服務成為手機產業鏈盈利模式的重要來源。對 標至汽車,偏向造業模式的傳統車具較固定的盈利模式,從而車企具較穩定的 利潤率,而目前在汽車電子電氣化架構趨勢下,軟體有多樣性應用的空間,無 論硬體抑或軟體體系均包含升級或新生環節,盈利模式尚未定型。而長遠來看, 偏向製造業邏輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業 穩態階段,往介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由 於迭代周期快且行業特性帶來的標準化程度低,賦予汽車新盈利模式。
特斯拉已構築初階車企軟體盈利模式。矽谷出身的特斯拉已證實一條軟體大規 模變現的可行性路徑,分為 FSD 付費、軟體應用商城及訂閱服務三種模式:
(1)FSD 付費模式:特斯拉車型在售出后標配 Autopilot 輔助駕駛功能,而實 現自動泊車、智能召喚的 FSD 全自動駕駛功能需付費使用。FSD 單價並未固 定,過去一年內特斯拉 FSD 售價經過三次提價(國外 8000 美元,國內 6.4 萬 元),成為特斯拉利潤的重要來源。以 2019 年 36.7 萬輛的交付量計算(30 萬 輛 Model3,6.7 萬輛 ModelS/X),假定 35%的 FSD 裝載率,6500 美元的 ASP, 則軟體收入近 8.3 億美元(其毛利率大概率高於 80%)。
(2)軟體應用商城:類似手機應用商城,可即時購買性能升級軟體包(包括輔 助駕駛功能、FSD 及各類性能升級包),通過 OTA 進行升級。
(3)訂閱服務:2019Q4 推出定價 9.9 美元/月的車聯網高級連接服務,包括流 媒體、卡拉 OK、影院模式等功能。2020Q2,特斯拉宣布計劃在年底推出定價 100 美元/月的 FSD 套件訂閱服務,為 FSD 的使用提供另一選擇。
對於第三方汽車軟體供應商,盈利模式仍不明晰,參考手機產業模式及目前行 業發展情況,預計其未來有望採用以下 3 種主流盈利模式:
(1)受主機廠委託,開發基礎平台並收取許可費用。
(2)供應功能模塊按汽車出貨量 Royalty收費(按銷售量和單價一定比例分成)。
(3)基於車企平台為其做定製化的二次開發,並收取費用。
市場空間:未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間
軟體市場進入快速擴張期。包括系統軟體和應用軟體在內的軟體系統將在智能 化趨勢中,由低基數實現快速擴張,據麥肯錫預計,軟體在 D 級車整車價值中 所佔的比例有望在 2030 年達到 30%,將成為未來汽車行業最重要的領域。
市場規模方面:電動智能化趨勢下硬體發展周期領先於軟體,增量市場彈性小 於軟體。據麥肯錫,2020-2030 年汽車軟體和 E / E 架構市場預計復合年增長 7%, 從目前的 2380 億美元增長至 2030 年的 4690 億美元。拆分來看,2020-2030 年軟體市場規模(操作系統、中間件及功能軟體)復合增速為 9%(由 2020 年 的 200 億美元,增長至 2025 年的 370 億美元,進一步增長至 2030 年的 500 億美元)。2020-2030 年動力系統市場規模復合增速為 15%,主要受動力源更 迭拉動。在硬體方面,ECU/DCU、感測器以及其他電子元件的復合增速分別為 5%、8%及 3%。軟體的應用帶動汽車集成及驗證環節革新,2020-2030 年集成 及驗證市場規模復合增速為 10%。
單車價值量方面:汽車軟硬體實現分離后兩者的發展模式將出現分化。其中硬 件體系的價值量隨模塊化、集成化發展,在規模化降本過程中其單車價值量增 長將較為平緩或略下降態勢;而軟體體系迭代速度快,在其對附加值模式的持 續探索下,價值量將持續上行。據麥肯錫預計,汽車中軟體單車價值量增速最 大,純電動車型將由 2025 年的 0.23 萬美元增長 7倍至 2030 年的 1.82 萬美元。同期 ECU/DCU、感測器、動力系統(除電池)及其他電子器件增速分別為 37%、 27%、-7%、5%。此外,在豪華車及主打智能化車型上,軟體的價值量佔比及絕對值將處較高水平。
汽車結構方面:全球汽車軟體與硬體內容結構正發生著重大變化,軟體驅動逐 漸成為主導。據麥肯錫預測,2016年軟體驅動佔比從 2010年的 7%增長到 10%, 預計 2030 年軟體驅動的佔比將達到 30%,屆時硬體驅動佔比僅為 41%。
軟體內容方面:應用型軟體為汽車軟體發展主力,ADAS 及 AD 軟體為主要增 量。據麥肯錫預測,2020-2030 年一體化軟體、驗證型軟體及功能性軟體市場 規模復合增速分別為 9%、10%、10%,其中功能性型軟體佔據汽車軟體半壁江 山(結構上佔比 6 成)。2020-2030 年按軟體功能劃分的市場規模中,最大增量 為 ADAS 及 AD 軟體,佔市場規模增量的 57%;信息娛樂、安全及聯網相關軟 件次之,占 20%;操作系統和中間件、車身和動力系統相關軟體、動力總成和 底盤相關軟體分別佔據 10%、10%、2%。
整車廠戰略思路:軟體為必爭之地
在汽車構架三步走過程中——傳統分散式電子電氣架構-域控制器電子電氣架 構-集中式電子電氣架構,主機廠將逐漸主導原本由 Tier 1 包攬的定製軟體部分, 軟硬體進行拆分發包的趨勢近年來愈發明顯。車企和互聯網軟體企業紛紛入局, 特斯拉引領車載軟體行業最高技術,大眾計劃緊跟,組建 5 千名軟體工程師開 發旗下所有車型統一的操作系統「vw.OS」,汽車屬性已然將逐漸由代步工具轉換 為移動的第三空間(例如未來的娛樂、辦公場所)。現階段整車廠與 Tier 1 的合 作模式仍在探索中,關乎開發周期、賦予附加值、構架實現、軟體變現模式以 及操作系統切入等問題上仍未進行標準化定義,卻為影響行業發展的關鍵所在。
特斯拉在軟體層面最大亮點是OTA 升級模式
特斯拉創整車 OTA 升級先河。其升級主要在兩個方面:一方面,將軟體升級發 送到車輛內的車載通訊單元,更新車載信息娛樂系統內的地圖和應用程序以及 其他車機類軟體。例如升級車機的運算速度、屏幕操作流暢度,運行高畫質游 戲以及增強可視化效果等,屬於駕駛艙內「看得見」的升級。另一方面,以直 接將軟體增補程序傳送至有關的電子控制單元(ECU),為 Autopilot 持續引入 及優化新功能。例如提升時速、修復駕駛漏洞等。軟硬體分離開發、硬體性能 冗餘的設計思路是實現 OTA 的必要條件,隨法規放開、演算法逐漸完善,特斯拉 以 OTA 升級軟體模式逐步解鎖新運用功能。此外,特斯拉顛覆車載軟體盈利模 式,以 6.4 萬元的 FSD 選裝軟體包定價、2000 美元的「 Acceleration Boost」 動力性能加速升級包獨創軟體付費的商業模式。
集中式電子電氣架構提供 OTA 基礎。特斯拉的整車 OTA 升級需要其超前的汽 車電子電氣架構做配套配合,傳統車企分散式電子電氣架構中 ECU 數量龐大, 單個 ECU RAM 內存容量有限,同時供應商的底層代碼和嵌入軟體差別較大, 難以完成整車功能的統一更新。而特斯拉採用集中式的電子電氣架構,分為 CCM(中央計算模塊,整合ADAS 及 IVI 域功能)、BCM LH(左車身控制模塊)、 BCM RH(右車身控制模塊)三個部分,2015 款的 Model S 大約有 15 個 ECU, 此後發佈的 Model 3 則直接通過 Hardware3.0 和三個車身控制器執行來控制行 駛、轉向和停止等功能,集中的架構和高算力的控制模塊支撐了特斯拉整車 OTA 升級。目前特斯拉已經可以通過 OTA 的方式實現改善車輛的底盤、信息娛樂、 電池續航、ADAS 乃至自動駕駛等多項功能,讓車的功能迭代更加靈活和便捷, 最終變成一台可以不斷進化的智能終端。
OTA 升級過程需數據網路配合,其安全性尤為重要。特斯拉 OTA 升級即指將程序從主機廠伺服器更新到指定 ECU,主要步驟為:車輛與伺服器通過蜂窩網 絡進行安全連接,將待更新的固件傳輸至車輛遠程信息處理系統及 OTA Manager,OTA Manager 將固件分發至需更新的 ECU 並管理更新過程,更新 完畢後向伺服器發送確認信息。整個 OTA 升級過程面臨安全考驗,騰訊科恩實 驗室曾實現對特斯拉的無物理接觸遠程攻擊,並將漏洞情況報告給特斯拉以做 修復。OTA 模式的信息安全(信息包加密及隔離)及功能安全(車輛狀態信息 傳輸)需得到足夠保障。
特斯拉 OTA 依然屬於行業標杆,傳統車企追趕特斯拉在研發 OTA 過程中仍面 臨困境。具先發優勢的特斯拉在 OTA 對動力和底盤系統有效升級層面、用戶體 驗、系統成熟和穩定性方面均處於行業領先地位,引領傳統車企和造車新勢力 跟隨布局,但仍面臨較多困難,體現在三個方面:其一,需投入較大的人力、 物力、財力,考驗主機廠研發實力;其二,OTA 打破固有的經銷商提供增值服 務的模式,利潤蛋糕重新切分具一定阻力;其三,OTA 安全性和穩定性上要求 較高,主機廠需理解部分互聯網領域技術。
大眾重塑軟體架構,推行 vw.OS 規劃
曾囿於軟體問題車型延遲交付。在特斯拉軟體技術快速迭代壓力下,大眾加緊 開發基礎架構,或因為開發過於倉促等因素,曾多次發生軟體問題,如新一代 純電動汽車 ID.3 因為軟體開發延遲造成交付時間推遲,新款高爾夫也曾因為倉 促上馬新技術(全數字座艙)於車輛中發現軟體問題而臨時停售。
大眾已著手構建軟體架構體系。為抗衡特斯拉及科技巨頭等新勢力的布局,大 眾愈發重視汽車軟體開發業務。2020 年 1 月 1 日起,大眾集團所有軟體開發工 作被集中至獨立新部門——Car.Software(2019 年 6 月份成立)。Car.Software 分為「互聯汽車和設備平台」「智能車身和駕駛艙」「自動駕駛」「車輛運動和能源」以 及「數字業務和出行服務」五個業務單元,其所有功能都將用於開發 vw.OS 車機 系統。一系列車型軟體問題出現后,寶馬製造工程高級副總裁 Dirk Hilgenberg 加入成為 Car.Software 負責人。此外大眾也對智能駕駛研發體系進行重組,如 拆分 L4 智能駕駛研發部分、合併各部門自動輔助駕駛研發。
大眾軟體計劃的內在驅動力來源於兩個方面:
其一:汽車軟體代碼愈發複雜。大眾曾做過統計,汽車軟體的行代碼遠大於其 他應用終端(汽車軟體 1 億行代碼 VS. Facebook 8 千萬行代碼 VS. PC 電腦 4 千行代碼 VS. 飛機 2.5 千萬行代碼 VS. 谷歌瀏覽器 1 千萬行代碼),是智能 手機的 10 倍。2020 年整車代碼量有望超 2 億行,達 L5 級智能駕駛代碼量有 望超 10 億行。
其二:汽車成為複雜的聯網設備,軟體將扮演重要角色。在大眾傳統車型上僅 需約 70 個 ECU,功能相對較為分散。而在未來的集成化計算單元體系下,軟 件的重要性將愈發凸顯,與 ECU 配合定義汽車功能,涵蓋操作系統、基礎軟體 以及其他應用軟體的車載軟體大眾均會自主開發。
大眾對研發投入、人員安排及軟體化目標做出規劃:
投入方面,大眾集團將在未來三到五年內投入 90 億美元(約合人民幣 630 億 元)資金進行軟體開發。員工方面,不同於製造環節的裁員情況,數字化部門 員工由 5000 名再次擴編至 1 萬人。軟體化目標方面,內部研發軟體佔比由不 足 10%提升到 60%以上,同時提出「8 合 1 目標」(將現有的 8 個電子平台整 合為一個平台)。2025 年前,所有新車型將使用 vw.OS 操作系統和定製的雲服 務(大眾與微軟合作),軟體在汽車創新中佔據 90%份額。
汽車軟體的未來推演
若考慮對汽車開發的終極假想,汽車最終會成為搭載「差異化元素」的通用化 平台。以目前視角,差異化元素涵蓋智能座艙(人與車互動的生態系統,包括 包括全液晶儀錶、車聯網、車載信息娛樂系統 IVI、ADAS、HUD、AR、AI、全 息、氛圍燈、智能座椅等方面)及智能駕駛(L1~L5 級智能駕駛等級)領域。而差異化元素主要由車型全新的電子電氣架構和軟體兩方面定義,一方面,ECU 里的功能模塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面, 車載娛樂系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉, 其深層次的安全防禦(檢測和防禦網路攻擊)愈發重要。經過產業趨勢推演, 提出以下 5 大汽車軟體趨勢預判。
趨勢 1.往車輛集中式電子電氣架構發展,功能中心化
集中式電子電氣架構為終極構架體系。以域控制器為代表產品的跨域集中式電 子電氣架構再往後走,就是集成化程度更高的車輛集中式電子電氣架構—— Vehicle computer and zone concept(車載電腦),終極階段為 Vehicle cloud computing(車雲計算)。未來車輛通過用高性能的中央計算單元取代現在常用 的分散式計算的架構,將實現「軟體定義車輛」的終極目標。再此過程 ECU 的整合過程持續提升,應用程序完全從硬體中抽象出來,控制單元概念最終被 智能節點計算網路接棒。
趨勢2.更高傳輸性能的乙太網作為主幹網路承擔信息交換任務
乙太網作為車內通信網路大勢所趨。隨車內數據傳輸總量及對傳輸速度要求持 續提升,以及在跨行業的標準協議需求驅動下,支撐更多應用場景、更高速的 乙太網有望取代 CAN(主要用於車載控制數據傳輸,最大帶寬 1MB/s)、LIN(低 成本通用串列匯流排,主要用於車門、天窗及座椅控制)、Most(主要用於發數據 包)等傳統汽車車內通信網路成為車內通信網路。在對同樣的 ECU 的軟體進行 更新時,CAN 模式下的傳輸時間是乙太網的 30 倍。因此,乙太網的運用趨勢 得到主流整車廠(如寶馬、通用等)及半導體公司(如博通、恩智浦等)認可, 均推出符合乙太網的應用元件。未來趨勢上,乙太網並非能一蹴而就完全替代 CAN、LIN,預計多種通信模式將在較長一段時間內共存——CAN、LIN 用於傳 感器和執行器等封閉低級網路間的數據傳輸;乙太網(取代 MOST 等技術)用 於域控制器及子部件間的信息交換。
趨勢3.OTA 空中升級模式普及
OTA 由特斯拉引領,向全行業普及。由特斯拉最先推行的 OTA 升級功能模塊 能持續修復汽車軟體缺陷、解決部分故障、解鎖或引入新功能以滿足用戶需求, 成為汽車軟體發展的主流趨勢。按照升級對象的不同,OTA 可分為 FOTA(硬 件在線升級)、SOTA(軟體在線升級)兩個大類,其中 FOTA 主要針對基礎硬 件和汽車底層安全相關功能的升級需求,例如剎車系統、制動系統及 BMS 等;SOTA 主要對座艙娛樂系統進行升級。對 ECU 而言,其內部為備份軟體準備了 額外區域空間,以備當前運行程序出現故障或升級中發生斷錯誤時自動滾回備 份軟體系統,防止車輛出現安全事故。
趨勢4.汽車在雲端交換信息
更為靈活的雲服務是 SDV 載體。從早期的機械時代過渡到目前的硬體時代,在 進一步進化至未來的軟體時代,汽車的功能實現方式持續演變,隨著客戶的個 性化定製需求日益增加,加之雲計算對智能、靈活和自動化的天然要求,由「軟 件定義」來操控硬體資源成為更合適的解決方案,未來大部分汽車功能在雲端 運行,為車企轉型提供聯接使能、數據使能、生態使能和演進使能。因此,在 雲計算的計算、存儲和網路等各方面的基礎設施上,均呈現出從軟硬體捆綁, 到硬體+閉源軟體,再到白盒硬體+開源軟體的演進趨勢。而雲服務也成為 AI、 智能汽車、大數據等新興科技實現商業化落地的載體(例如特斯拉在雲服務載 體上進行 OTA 升級)。近年來雲服務市場實現爆髮式增長,而車載環節尚處於 發展初期,後續增量空間大。
趨勢5.信息安全領域需深層次防禦
汽車電子的運用及智能網聯化趨勢推進車載信息安全要求提升。汽車脫離孤立 單元后,隨之而來的是攻擊面的新增,一方面車輛聯網后其數據面臨被盜取、 泄露風險,另一方面電控系統普及后存在轉向、剎車等關鍵功能被外部控制的 可能性(例如破解車機、T-Box、網管后,向 CAN 發送惡意指令)。即接入汽車控制終端的 APP、網路系統、ECU 代碼均可能成為新攻擊向量。雲(車聯網 平台)-管(車聯網基礎設施)-端(車載智能及聯網設備)均存在信息安全問 題,將造成車輛功能性安全隱患:
(1)雲端與管端:接送關鍵數據的中央互聯網關直接連接至車企後台,部分第 三方公司被允許數據訪問。目前網聯實現通常會通過 APP 實現應用層功能(例 如解鎖車門、調用空調功能等),此時存在手機端與雲端的通信過程,且應用程 序供應商能直接訪問開放的相關數據介面。通過雲端和對外通信管端能對車機 端直接進行攻擊。
(2)車機端:當功能系統被授權時,黑客能對CAN匯流排發送相關指令控制ECU。騰訊道恩實驗室曾對特斯拉 Model S 進行過無物理破解實驗,以 Wifi 熱點接入 向車載娛樂系統植入軟體取得車機許可權,在破解網關后能控制其多個電控單元。
為抵禦外部攻擊需建立深層次的安全防禦系統,嚴控與功能安全及數據連接。汽車的防護措施隨交互信息增多其力度持續提升。車企安全團隊通常基於雲-管 -端對症建立安全防禦系統以應對外部攻擊:
(1)雲端:車載終端是汽車安全架構的核心,主要注意 T-BOX(用於車端和 外界通信)和 OBD(用於將汽車外部設備連接到 CAN 匯流排)兩大塊的信息防 護。實時進行入侵檢測,防止 DDos 攻擊。
(2)管端:汽車在未來將頻繁接入和退出網路節點,存在被篡改信息的風險。通常需要對通訊過程及傳輸數據進行加密,採用專門的 APN 接入網路。
(3)車機端:加強安全固件驗簽及防 root 機制,管理介面並建立監控體系。此外,可在車輛功能模塊上單設安全晶元對數控進行校驗。
部分第三方供應商能參與至信息安全環節。汽車安全防禦對於以特斯拉、蔚來、 小鵬等為代表的有互聯網基因的造車新勢力來說,擁有一定先天的優勢。包括 特斯拉在成立之初便組建了來自谷歌、微軟等互聯網企業的 40 人的網路安全專 家,小鵬和蔚來與阿里、騰訊等互聯網廠商進行深度合作,未來華為等供應商 是此領域的預備軍。目前網路安全系統仍缺乏標準的信息安全方案,原本的汽 車軟硬體供應商難以以統一標準滿足不同整車廠的信息安全要求,並且在測試 階段很難直接接入車企平台進行網路安全試驗。預計未來行業將有提供信息安 全方案、網路安全模塊以及某一特定領域防禦系統的第三方軟體供應商出現。
投資建議和推薦標的
百年汽車工業面臨由機械機器向電子產品過渡的新變局,在我們看不到的隱秘 角落——上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計 算單元,與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應 響應指令。近年來,SDV(軟體定義汽車)概念逐步被整車廠認知,根源在於 「汽車如何體現差異化」問題的變遷,硬體體系將逐漸趨於一致,軟體成為定 義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件拼合能力演變成將上億 行代碼組合運行的能力。
SDV 趨勢下汽車軟硬體分離重塑市場格局,盈利模式由硬體向持續賦予附加值 的軟體傾斜。主機廠愈發需具備軟體的管理能力及核心軟體設計能力,並引入 供應商及互聯網企業參與此環節,開發基礎平台並收取許可費用、供應功能模 塊按汽車出貨量 Royalty 收費及基於車企平台做定製化的二次開發均為未來主 流的軟體供應商盈利模式。預計 2030 年 500 億美元市場空間,復合增速 9%。
汽車最終會成為搭載「差異化元素」的通用化平台。一方面,ECU 里的功能模 塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面,車載娛樂 信息系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉,其深 層次的安全防禦(檢測和防禦網路攻擊)愈發重要。關於賦能域控制器、定位 車機系統的各項軟體性能升級,包括車內乙太網應用、整車 OTA 升級、信息交 互上雲及深層次的信息安全防禦等,或將帶來一系列發展機遇。
資料來源:https://m.news.sina.com.tw/article/20201001/36497492.html?fbclid=IwAR1zWwTMiTHwfLyqZ7Qx698UjYwI3v0c-hs3gXdy560Rf5BgAS4Ts4QLbOQ
合併執行算法 在 李俊俋 Youtube 的精選貼文
1.基於我國現行法制規定,中選會乃屬獨立機關性質,故應依法獨立行使職權,不受其他機關監督指揮,與公投審議委員會為行政院內部機關性質不同,故而在102年審查預算時,將中選會對於執行公投審議委員會之預算予以刪除。然而,中選會竟以違反預算法第22條規定,向行政院申請動用第二預備金,顯然無視立法院審查預算之國家監督機制。又103年行政院違反中央機關組織基準法規定,要求中選會接受行政院委辦處裡其內部機關公投審議委員會,完全無視我國法政制度,是個知法卻不守法的政府。
2.為減少台灣年年辦選舉的情況,我國將進入三合一、五合一、七合一之選舉制度,然而,依據「中選會辦理選舉期間之認定計算方式」,中選會所設定之總統副總統及立法委員選舉期間,為5個月,地方選委會所設定期間則為4個月;另中選會設定之鄉鎮市長及其市民代表選舉期間,為2個月,地方選委會則設定2.5個月,顯示該計算方式與即將進入之合併選舉形態,有所落差,督促中選會予以檢討修正。
合併執行算法 在 一罪一罰判29年,結果合併執行只要四年半? - Mobile01 的推薦與評價
... 連犯38罪,以一罪一罰,被宜蘭地方法院判刑累計近29年,合併後,應執行4年半徒刑。 ... 怎麼又合併執行刑期? ... 承您所說, 這的確是鬼島算法沒錯! ... <看更多>
合併執行算法 在 台灣創新法律協會- ⭕️ 臺灣高等法院109年抗字第1002號刑事 ... 的推薦與評價
「吸收主義」是直接以數罪分別所作之宣告刑,其中最重之宣告刑當作數罪之執行刑,例如2月、3月與4月共三個宣告刑,其合併執行刑即為4月)。 「限制加重 ... ... <看更多>
合併執行算法 在 Re: [問題] 有關於合併執行的問題- 看板LAW 的推薦與評價
自問自答,這個應該是正解吧
刑法第51條
數罪併罰,分別宣告其罪之刑,依下列各款定其應執行者:
一、宣告多數死刑者,執行其一。
二、宣告之最重刑為死刑者,不執行他刑。但罰金及從刑不在此限。
三、宣告多數無期徒刑者,執行其一。
四、宣告之最重刑為無期徒刑者,不執行他刑。但罰金及從刑不在此限。
五、宣告多數有期徒刑者,於各刑中之最長期以上,各刑合併之刑期以下
,定其刑期。但不得逾三十年。
六、宣告多數拘役者,比照前款定其刑期。但不得逾一百二十日。
七、宣告多數罰金者,於各刑中之最多額以上,各刑合併之金額以下,定
其金額。
八、宣告多數褫奪公權者,僅就其中最長期間執行之。
九、宣告多數沒收者,併執行之。
十、依第五款至第九款所定之刑,併執行之。但應執行者為三年以上有期
徒刑與拘役時,不執行拘役。
所以被判1年、1年、1年、3年、5年、10年有期徒刑者
應合併執行10年~21年
被判3年、5年、10年、15年有期徒刑者
應合併執行15年~30年
中間的部分則由法官自行決定
如以上有誤,請指正。
然而此規定對於大量同類刑期,是否有缺失或不合理之處?
如一名鬼父性侵女兒兩千次,被判兩千個五年有期徒刑
則以上述方式計算應合併執行5年~30年
若法官一時高興或鬼迷心竅,他可以「依法」宣判「合併執行五年一個月有期徒刑」
雖然我是覺得上面這種例子,一般法官不會沒事惹麻煩啦
然而此等範圍計算上的缺失,是否曾被質疑或討論過?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.136.228.78
※ 編輯: kirimaru73 來自: 220.136.228.78 (07/02 18:12)
※ 編輯: kirimaru73 來自: 220.136.228.78 (07/02 18:13)
... <看更多>