📜 [專欄新文章] 區塊鏈管線化的效能增進與瓶頸
✍️ Ping Chen
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
使用管線化(Pipeline)技術可以提升區塊鏈的處理效能,但也可能會產生相應的代價。
Photo by tian kuan on Unsplash
區塊鏈的擴容方案
說到區塊鏈的效能問題,目前討論度最高的應該是分片(sharding)技術,藉由將驗證者分成多組的方式,可以同時分別處理鏈上的交易需求,即使單分片效能不變,總交易量可以隨著分片/驗證者集的數量線性增加。
除了分片,另一個常用來提升程式效能的方案是將計算步驟拆解,以流水線的方式將複雜的運算攤平,降低系統的閒置時間,並大幅提升工作效率。為了達到管線化預期的目的,會需要先知道系統的瓶頸在哪。
區塊鏈的效能瓶頸
熟悉工作量證明設計哲學的人應該會知道,區塊鏈之所以需要挖礦,並不是為了驗證交易的正確性,而是要決定交易的先後順序,從而避免雙花和帳本分裂的發生。可以說,區塊鏈使用低效率的單線程設計,並付給礦工高額的成本,都只為了一件事,就是對交易的全局排序產生共識。
在這樣的基礎之上,區塊鏈在一段時間內可以處理的交易數量是有限的,這之中包含許多方面的限制,包括 CPU 效能、硬碟空間、網路速度等。其中,關於 TPS(每秒交易數) 提升和對硬體的要求大致上是線性增加的,但在設計共識演算法時,通訊複雜度常是平方甚至三次方的關係。
以現在的目標 TPS 來說,處理交易和生成一個合法的區塊並不困難,只是因為區塊鏈的特性,新區塊需要透過洪水法的方式擴散到全網路,每個節點在收到更新請求的時候都要先執行/驗證過區塊內的交易,等於整個廣播的延時會是「驗證區塊時間×經過的 hop 數量」這麼多。似乎網路越分散、節點越多,我們反而會需要降低計算量,以免讓共識不穩定。
管線化的共識機制
使用權益證明取代工作量證明算是行業發展的趨勢,除了環保或安全這些比較顯然的好處之外,權益證明對產生共識的穩定性也很有幫助。首先,權益證明在同一時間參與共識的節點數是已知的,比較容易控制數量級的邊界;其次,權益證明的出塊時間相較工作量證明固定很多,可以降低計算資源不足或閒置的機率。
相較於工作量證明是單一節點出塊,其餘節點驗證,權益證明的出塊本身就需要很多節點共同參與,瓶頸很像是從驗證轉移到通訊上。
以 PBFT 為例,每次產新區塊都需要經過 pre-prepare, prepare, commit 三個階段,你要對同意驗證的區塊簽名,還要對「你有收到某人的簽名」這件事簽名,再對「你有收到 A 說他有收到 B 的簽名」這件事簽名,過程中會有很多簽名飛來飛去,最後才能把一個區塊敲定。
為了降低每兩個區塊間都需要三輪簽名造成的延遲,後來的共識演算法包括 HotStuff 和 Casper FFG 採用了管線化的區塊驗證過程。也就是對區塊 T 的 pre-prepare 同時是對 T-1 的 prepare 和對 T-2 的 commit。再加上簽名聚合技術,出塊的開銷在複雜度等級和係數等級都降低許多。
然而,要保持管線化的區塊生產順利,需要驗證者集合固定不變,且網路通訊狀況良好。如果會經常更動驗證者集合或變換出塊的領導者,前後區塊間的相依性會是個大問題,也就是 T 的驗證者集合取決於 T-1 裡有沒有會導致刪除或新增驗證者的交易,T-1 的合法性又相依於 T-2,以此類推。
當激烈的分叉出現的時候,出塊跟共識的流水線式耦合就從優雅變成災難了。為了避免這種災難,更新的共識演算法會限制驗證者變更的時機,有些叫 epoch 有些叫 checkpoint,每隔一段時間會把前面的區塊徹底敲定,才統一讓驗證者加入或退出。到這些檢查點的時候,出塊的作業流程就會退化成原本的三階段驗證,但在大部分時候還是有加速的效果。
管線化的狀態更新
另一個可以用管線化加速的是區塊鏈的狀態更新。如前所述,現在公鏈的瓶頸在於提高 TPS 會讓區塊廣播變慢,進而導致共識不穩定,這點在區塊時間短的以太坊上尤其明顯。可是如果單看執行一個區塊內的交易所花的時間的話,實際上是遠遠低於區塊間隔的。
只有在收到新區塊的時候,節點才會執行狀態轉移函數,並根據執行結果是否合法來決定要不要把區塊資訊再廣播出去。不過其實只要給定了交易集合,新的狀態 s’ = STF(s, tx) 應該是確定性的。
於是我們有了一個大膽的想法:何不乾脆將交易執行結果移出共識外呢?反正只要大家有對這個區塊要打包哪些交易有共識,計算的結果完全可以當作業留給大家自己算吧。如果真的不放心,我們也可以晚點再一起對個答案,也就是把這個區塊執行後的新狀態根包在下個區塊頭裡面。
這就是對狀態更新的管線化,在區塊 T 中敲定交易順序但暫不執行,區塊 T+1 的時候才更新狀態(以及下一批交易)。這麼做的好處十分顯而易見,就是將原本最緊繃的狀態計算時間攤平了,從原本毫秒必爭的廣播期移出來,變成只要在下個塊出來之前算完就好,有好幾秒的時間可以慢慢來。新區塊在廣播的每個 hop 之間只要驗證交易格式合法(簽名正確,有足夠的錢付手續費)就可以放行了,甚至有些更激進的方案連驗簽名都省略了,如果真的有不合法交易混進去就在下個區塊處罰礦工/提案者便是。
把負擔最重的交易執行移出共識,光用想的就覺得效能要飛天,那代價呢?代價是區塊的使用程度會變得不穩定。因為我們省略了執行,所以對於一筆交易實際用掉多少 gas 是未知的。本來礦工會完整的執行所有交易,並盡可能的塞滿區塊空間,然而在沒有執行的情況下,只能以使用者設定的 gas limit 當作它的用量,能打包的交易會比實際的上限少。
緊接著,下一個問題是退費困難。如果我們仍然將沒用完的手續費退還給使用者,惡意的攻擊者可以透過發送 gas limit 超大,實際用量很小的交易,以接近零的成本「霸佔」區塊空間。所以像已故區塊鏈 DEXON 就直接取消 gas refund,杜絕濫用的可能。但顯然這在使用者體驗和區塊空間效率上都是次優的。
而最近推出的 smartBCH 嘗試擬了一套複雜的退款規則:交易執行後剩餘的 gas 如果小於 gas limit 的一半(代表不是故意的)就退款;如果剩餘量介於 50%-75% 可以退一半;超過 75% 推斷為惡意,不退款。乍看是個合理的方案,仔細一想會發現製造的問題似乎比解決的還多。無論如何,沒用掉的空間終究是浪費了,而根據殘氣比例決定是否退款也不會是個好政策,對於有條件判斷的程式,可能要實際執行才知道走哪條路,gas limit 一定是以高的情況去設定,萬一進到 gas 用量少的分支,反而會噴更多錢,怎麼想都不太合理。
安全考量,退費大概是沒希望了。不過呢,最近以太坊剛上線的 EIP1559 似乎給了一點方向,如果區塊的使用程度能以某種回授控制的方式調節,即使偶爾挖出比較空的區塊似乎也無傷大雅,也許能研究看怎麼把兩者融合吧。
管線化方案的發展性
考慮到以太坊已經堅定地選擇了分片的路線,比較激進的單鏈高 TPS 管線化改造方案應該不太有機會出線,不過管線化畢竟是種歷史悠久的軟體最佳化技巧,還是很有機會被使用在其他地方的,也許是 VDF 之於信標鏈,也許是 rollup 的狀態轉換證明,可以坐等開發者們表演。
倒是那些比較中心化的 EVM fork/sidechain,尤其是專門只 for DeFi 的鏈,管線化加速可以在不破壞交易原子性的前提下擴容,確實是有一些比分片優秀的地方可以說嘴,值得研究研究,但這就要看那些機房鏈們有沒有上進心,願不願意在分叉之餘也投資發展自己的新技術了。
給我錢
ping.eth
區塊鏈管線化的效能增進與瓶頸 was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有13部Youtube影片,追蹤數超過1萬的網紅寶妮老師 Bonnie,也在其Youtube影片中提到,微積分教室也富奸太久XDDD 這次是粉絲許願系列 帶你輕鬆理解除法微分公式 ........................................ Hello!我是Bonnie,大家最害怕的高中數學老師。 因為有感於現今網路多媒體遠比課本紙筆更有吸引力,所以決定除了在學校外,也在網路上分...
「導函數題目」的推薦目錄:
- 關於導函數題目 在 Taipei Ethereum Meetup Facebook 的最佳解答
- 關於導函數題目 在 辣媽英文天后 林俐 Carol Facebook 的最佳解答
- 關於導函數題目 在 我是潔媽 也是丞媽 Facebook 的精選貼文
- 關於導函數題目 在 寶妮老師 Bonnie Youtube 的最佳解答
- 關於導函數題目 在 數學老師張旭 Youtube 的最佳解答
- 關於導函數題目 在 數學老師張旭 Youtube 的最佳解答
- 關於導函數題目 在 [心得] 微積分考前略整- 精華區trans_math 的評價
- 關於導函數題目 在 求導數例題1(1) 的評價
- 關於導函數題目 在 [中學] 幾題"導函數"章節的題目- math | PTT學習區 的評價
- 關於導函數題目 在 導函數 - 數學板 | Dcard 的評價
- 關於導函數題目 在 微分的練習鏈鎖律求導函數 - YouTube 線上影音下載 的評價
- 關於導函數題目 在 張旭微積分|極限篇[12] lim_(x→0) sin(x) / x 專論|範例1 的評價
導函數題目 在 辣媽英文天后 林俐 Carol Facebook 的最佳解答
感謝熱情認真的李學長,
今天要來介紹「建中科學班」!
————————————————————
科學班考試三月多就考了,獨立招生。
📍考進科學班有什麼優點?
主科老師會是比較有經驗的,幾乎沒有地雷老師。老師還會同時兼任你的專題研究老師
🔆三年不分班,會有電神互相切磋討論。
教學資源多,可以借用科學館做實驗、借競賽資料、想考數理科免修可以直接報名(普通班要7%或是老師推薦)。
數理科目進度高二就上完,要在高三去台大修課(微積分、普通物理、普通化學、普通生物四選一)。高二下須通過資格考試方能第三年取得台大修課資格,沒考過者你會拿不到科學班認證證明文件,但是不會強制將你轉班。
📍 科學班的內容會不會比較難,成績會不會不好看?
🔆 數理科的內容會比較難,老師比較少管必選修,以主題式教學為主。
某些科目段考較難,老師會調到比較高分,只要你有努力老師一定看得出來分數給的算高。文科被當在科學班會更常發生,因為我們甄選就是數理跟一階不太難的語文考試。
📍 我是一個沒有超修的國三生(注意,那是會考前),要怎麼準備考試?
🔆 初試:
語文:不用太擔心,英文國文都在會考範圍,然後T分數差距也不大。
考古題以及其相似題型有公開,建議練完,才有考過初試的機會。
同樣地,初試會有沒準備的人來考,分數的標準差較大,最後T分數大概會落在60上下,在總體人數上大約是60/350。
科學班數學考試絕大多數題都可以國中解法,但多半想不太到。不會寫不要太沮喪,其他人大部分也不會寫。如果有餘力可以學習一些高中好用的單元如三角函數,能在你想不出那些超難解法時提供一個只要花時間就可以做出來的方法。
自然科會參雜一些高中觀念,但是不太會影響到解題,計算方面則多半是國中公式在高中的延伸。可以針對考古題去對對應的高中章節進行延伸閱讀在考試時比較不會那麼慌。
🔆 複試(實驗&證明):
數學佔複試4成,數學會是好幾大題每題帶六七小題的形式,其中每題的前段基本上通過初試的人都做得出來,建議每題都先做完前幾小題,卡在一大題很久會造成大量的分數損失。建中沒有公布複試題目,但外縣市學校好像有,可以去找找,但難度低於建中。
物理和化學各佔複試的2成,都有筆試和實驗。
物理筆試會考一些較難的高二高三題型最難到達物理奧林匹亞初複試水平,運動學和力學佔大宗,物奧初選該部份可以在高中範圍念完後練習一下。光學和熱學出現了國中為提供的公式請先自行預習,高中的電磁學與國中難度差較多,考的比較少。
化學筆試範圍有點多且量也很多(四十幾頁),有英文文章的閱測,比起其他題這類題目只要英文能力強一點就能做了。其他題目需要高中大量觀念,而且有些觀念是常常連高中生都忽視的(像溶解)。
🔆 實驗的部分:
兩科都是以高中實驗改編而來,會有線索提供你研究步驟以及計算,在討論的部分最好能去閱讀一些高中的實驗手冊,了解格式以及重點句的寫法,不要玩器材,會被扣分,打破也會(手殘者在此)。數據做出來差強人意也要放然後再想辦法解釋,你如果捏造數據老師一定會發現,你的成績就不會太高。有些討論不會需要作完實驗,實驗做不出來趕緊寫那裡搶分!!
複試的實驗技巧很多難以以國中的能力去填補,如果有這個規劃,可以在初試後詢問你的國中理化老師是否有機會讓你在課餘時間自主訓練高中實驗。(我的國中老師蠻支持的)
生物和地科各佔複試一成,生物高機率動植物器官、滲透壓、細胞觀察。做好這三類的實驗考過機率較大。地科由於內容不多,推薦讀完高中內容,才能節省做題組前要看大量資料才能解決的窘境。
✅ 再來是學習歷程的部分,學習歷程會用到競賽、專題等東西,考上者你們跟數資班對比的優勢就在四月到七月了,趕緊選一科專心拼競賽。在開學後你們可以跟數資班拉開一段距離(但在一、兩年後就沒了QQ)
✅專題研究有數學、物理、化學、生物、地科、資訊六科可以選,與你的競賽能力無關,建議去台大或中研院找個指導教授,他能帶給你大量的收穫。
專題研究高一下開始分組,高二上10月有國際科展初審,進度快者可以直接拼這個
高二下三月會有校內科展然後特優可至台北市科展然後特優可至全國科展,最後還是會回到台灣國際科展,台灣國際科展的目的就是篩選出一批國手前往美國比ISEF選上國手至少可以推薦本科系,得幾等獎會影響保送推薦範圍,請查教育部法規。
✅ 開學初會有能力競賽,以及各科奧林匹亞,能力競賽物理、化學、生物、地科限四選二初試,到了校隊培訓時資訊以外科目限選一科成為校隊。
然後有時候比競賽還是會吃天賦的,吃天賦的大小由左至右遞減大概是
數學>資訊>物理>化學>生物
但同樣也有人全部都行然後被迫上述能競四選二
最終能力競賽與奧林匹亞都會匯流到選訓營,然後決選營,而選訓營前半會推薦個本科系,成為國手後得金銀銅會影響保送推薦範圍,請查教育部法規。
✅ 科學班保送推薦人數僅佔三分之一,其餘的人最終還是會回流到學測指考。如果當初文科很爛考進來,沒拼到保送或推薦及特殊選才者很吃虧。可能會因此落入一些較差的志願。申請時如果有一個某科選訓營,加分會很賺。
✅ 再來就是要關注人才培育計畫,大概在8, 9月可以去考,有台大、清大、中研院等等各科的培育。這可以推廣到專題研究的部分,如果你對計畫裡的指導教授的研究主題感興趣的話,你可以毛遂自薦,指導教授get!
✅科學班的同儕實力很強大,有數物化生地免修的人、各科的奧林匹亞決選者與國手,跟他們一同考試時不要壓力太大。也因為這樣你永遠有奮鬥的目標,以及能幫你在課業跟競賽都走得更遠的人。
#俐媽學子經驗分享
#俐媽學子經驗分享資優班篇
#他們認真拚數理科學
#但也沒偏廢英文的學習喔
#台大明明高手輩出
導函數題目 在 我是潔媽 也是丞媽 Facebook 的精選貼文
#文末有抽獎
趙又潔 Yumi 現在是高一,在學校有參加社團,常常課後要留校參加社團的活動、或是和同學規劃、籌備、討論社團活動的過程,無法固定時間去補習班上課。有了「Snapask 時課問」的APP,可以解決功課方面的問題。因為「Snapask 時課問」APP是24小時全年無休,只要有功課方面的問題,可以用拍照的方式、或是再加上編輯圖片或增加文字,把要問的問題上傳、系統就會找合適的老師幫您解答。不僅問到解答,還可以針對題目知識點請老師做詳細解說,讓您了解的更清楚。無論是何時何地、只要可以連上網路、就可以使用並幫您解決問題。
有次提問「三角函數的商數關係、平方關係」,Mckchgun老師馬上幫又潔解答,解題的步驟寫的很詳細,又潔一看就懂了。老師還問又潔:「有沒有看不懂的地方,可以跟我說哦~」
更有次提問「三角函數的化解公式」,CHB1009老師馬上用錄音的方式回答,套用那個公式直接解答,又潔立即解答、一下就解出來了。老師也問又潔有不懂的地方都可以再提問
又潔高一的功課,不是每位家長都可以從旁協助解決問題,有了「Snapask 時課問」APP,就可以很輕鬆的幫每位家長解決問題,讓小孩讀書考試更輕鬆,也可增加親子的關係。
「Snapask 時課問」Snapask 是一款專門為國、高中學生,提供即時專屬家教解題與個人化學習指導的App,只要拍下題目並上傳照片,App就能及時配對最適合的家教,讓孩子的學習更有效率。
#粉絲福利時間
只要在4/23 23:59前按讚+分享+留言@2位朋友,就會抽出三位幸運粉絲免費體驗20題幸運包喔!
#Snapask時課問 #snapasktw
(兌換碼有大小寫之分,兌換一次會有兩題,每人限兌一次)與兌換碼連結(連結本身就可以導下載註冊,需在貼文裡註明):
兌換碼:jgVh2Q1
連結:https://get.snapask.com/tvbsparents
現金券$500適用於我們每月50及100題的訂閱制方案。
現金券折扣碼:54410
方案連結:http://bit.ly/2COtauo
導函數題目 在 寶妮老師 Bonnie Youtube 的最佳解答
微積分教室也富奸太久XDDD
這次是粉絲許願系列
帶你輕鬆理解除法微分公式
........................................
Hello!我是Bonnie,大家最害怕的高中數學老師。
因為有感於現今網路多媒體遠比課本紙筆更有吸引力,所以決定除了在學校外,也在網路上分享我的生活、教學、自修以及與學生相處的小心得。
如果你還是學生,你可以發現老師其實沒那麼討人厭😂如果你已經畢業,你可以在這裡找回一點青春回憶👩🎓👨🎓
Enjoy it and have a good time!
.........................................
IG: charmingteacherbonnie (Bonnie老師)
粉絲專頁: 寶妮老師
https://www.facebook.com/%E5%AF%B6%E5%A6%AE%E8%80%81%E5%B8%AB-Charming-Teacher-Bonnie-290462364959770/
PODCAST
Firstory: https://ppt.cc/f2Z9Jx
KKbox: https://reurl.cc/ra0Nv1
Spotify: https://reurl.cc/WEbpN7
Apple podcast: https://reurl.cc/OX6xr9
Google podcast: https://reurl.cc/V32y06
Pocket cast: https://pca.st/fp7r1tcr
導函數題目 在 數學老師張旭 Youtube 的最佳解答
【摘要】
本影片介紹了四大積分基本方法之四:部分分式法;這個方法主要對付所有多項式相除的函數,也就是有理函數;這個方法的步驟比較繁雜一點,容易計算錯誤,同學除了了解作法以外,應該也要多刷題目練習
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews
【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商、管學院學生觀看
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分篇】
重點一:定積分直觀觀念 (https://youtu.be/gOuE68S3kXw)
重點二:奇偶函數的積分 (https://youtu.be/-UOnX6PWogc)
重點三:定積分正式定義 (https://youtu.be/9igA5vuk5Zc)
重點四:積分運算性質 (https://youtu.be/WOyCaUMVmbw)
重點五:微積分基本定理 I (https://youtu.be/T3o_OU2J9ss)
重點六:不定積分與反導函數 (https://youtu.be/fJhHZ9Hk1ec)
重點七:雙曲函數 (https://youtu.be/gfjGpy-pNIs)
重點八:積分表 (沒有講解影片)
重點九:四大積分基本方法之一:變數變換法 (https://youtu.be/trMid_t8_us)
重點十:四大積分基本方法之二:三角置換法 (https://youtu.be/VL--z89nYBs)
重點十一:四大積分基本方法之三:分部積分法 (https://youtu.be/VwUK8_JAuwk)
重點十二:積分表 (沒有講解影片)
重點十三:四大積分基本方法之四:部份分式法 👈 目前在這裡
├ 精選範例 13-1 (https://youtu.be/QLEGJ9uKkJo)
├ 精選範例 13-2 (https://youtu.be/tXQDu9M4XbI)
├ 精選範例 13-3 (https://youtu.be/1K-UU-ewCuk)
├ 精選範例 13-4 (https://youtu.be/J7zbEMkhSvI)
└ 精選範例 13-5 (https://youtu.be/BSGlO9XLHQM)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM
【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享
導函數題目 在 數學老師張旭 Youtube 的最佳解答
【摘要】
本影片介紹了連續分部積分的技巧,這個技巧是很多補習班都會教的技巧,特別針對要連續做很多次分部積分的題目有明顯加速的效果,講究考試速度的同學一定要學
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews
【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工學院學生觀看
商、管學院學生當參考
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分篇】
重點一:定積分直觀觀念 (https://youtu.be/gOuE68S3kXw)
重點二:奇偶函數的積分 (https://youtu.be/-UOnX6PWogc)
重點三:定積分正式定義 (https://youtu.be/9igA5vuk5Zc)
重點四:積分運算性質 (https://youtu.be/WOyCaUMVmbw)
重點五:微積分基本定理 I (https://youtu.be/T3o_OU2J9ss)
重點六:不定積分與反導函數 (https://youtu.be/fJhHZ9Hk1ec)
重點七:雙曲函數 (https://youtu.be/gfjGpy-pNIs)
重點八:積分表 (沒有講解影片)
重點九:四大積分基本方法之一:變數變換法 (https://youtu.be/trMid_t8_us)
重點十:四大積分基本方法之二:三角置換法 (https://youtu.be/VL--z89nYBs)
重點十一:四大積分基本方法之三:分部積分法 (https://youtu.be/VwUK8_JAuwk)
├ 精選範例 11-1 (https://youtu.be/SFss3hMzU4Q)
├ 精選範例 11-2 (https://youtu.be/uSnaHwtq28w)
├ 精選範例 11-3 (https://youtu.be/Mks1M_jh-jw)
├ 精選範例 11-4 (https://youtu.be/6Yc1UvkhcbM)
├ 精選範例 11-5 (https://youtu.be/cl6JvIhed-M)
├ 精選範例 11-6 (https://youtu.be/oU7PhO_CWzo)
├ 精選範例 11-7 (https://youtu.be/PXNL0piuUT0)
└ 精選範例 11-8 👈 目前在這裡
重點十二:積分表 (沒有講解影片)
重點十三:四大積分基本方法之四:部份分式法 (https://youtu.be/FDxrP8FT3yE)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM
【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享
導函數題目 在 求導數例題1(1) 的推薦與評價
【名師到你家】數學B_三角 函數 溫故知新10大必考題型. 聯樺. 聯樺. •. 23K views 3 years ago · How to Speak. MIT OpenCourseWare. ... <看更多>
導函數題目 在 [中學] 幾題"導函數"章節的題目- math | PTT學習區 的推薦與評價
[中學] 幾題"導函數"章節的題目. 看板 Math. 作者 BanPeeBan. 時間 2019-03-13 20:00:12. 留言 0則留言,0人參與討論. 推噓 0 ( 0推 0噓 0→ ). ... <看更多>
導函數題目 在 [心得] 微積分考前略整- 精華區trans_math 的推薦與評價
這幾天把要考的學校題目都稍稍寫過了,
順便藉由這篇文章做一些考前的統整,
或許也可以幫助到一些版友。
※章節分類
(1) 基礎知識
(2) 極限
(3) 連續
(4) 導函數
(5) 微分應用
(6) 不定積分
(7) 積分應用
(8) 多變函數
(9) 重積分
(10) 數列與級數
(11) 向量微積分
(12) 微分方程
A.基礎知識
這部分的內容就簡述一些在微積分中頻繁或可能用到的高中數學知識。
(a) 函數概念:奇偶函數、函數有理化、配方法、根與係數
牛頓一次因式檢驗、公式解、反函數、合成函數
(b) 三角函數:平方關係、商式關係、和差角公式、倍半角公式
和差化積、積化和差、餘弦定理、正弦定理
(c) 數列級數:無窮等比、等差數列、級數求和公式
(d) 其他:Euler Formula(三角函數、雙曲函數)
B.極限篇
這部份則用題型來做分類:
(a) 利用極限的柯西定義式去證明一極限式(少考)
(b) 極限求值 - 三角極限 (極限等價式、L'Hospital或採級數解)
極限求值 - 無窮極限 (若出現負無窮,先做代換,避免出錯,
由分式上下領導係數求解)
極限求值 - 夾擠定理 (此型形式明顯,但小心可能與黎曼和搞混)
極限求值 - 高斯函數 (熟記高斯函數概念,小心分段點,
善用討論左右及代換法)
(c) 漸近線
(1)水平漸近: 即解無窮極限
(2)鉛直漸近: 分式型時常令分母為0 ( 因其定義需 -> 無窮 )
(3)斜漸進線: 先求斜率再找截距
註: 以上僅簡述分式型, 小心指對數之漸近.
有時將函式化做代分式可快速判得
C.連續篇
這邊主要是緊扣連續的概念:(1)極限值存在
(2)函數值存在
(3)極限值與函數值相等
其餘則為定理記憶和應用,
比如固定點 Fixed Point 之證明(中原期中、清大研究所)
D.導函數篇
(a) 導函數定義
(b) Chain Rule (注意對數微分法、指數微分法)
(c) 反函數的微分、參數式表示下的微分 ( 即Chain Rule應用 )
E.微分應用
(a) 洛爾均值、均值定理(拉格朗日均值)、柯西均值
需會其證明,並得以利用上述定理證明不等式或求近似值
(b) 單變函數極值
緊扣臨界點(Critical Point)概念,求得後(端點、平穩點、奇異點),
若判相對,考慮一階導數判別(增減性改變與否?)
或二階導數判別(凹口向上或向下?)
若求絕對則直接代入臨界點求值比較大小
(c) 反曲點(Inflection Point)概念
二階導數為零,三階導數不為零之點(此為Adams之定義)
廣義些,只需左右凹性不同,不需具二階導數存在(Larson之定義)
(d) L'Hospital
標準不定型(零分之零,無窮分之無窮)時可用,
常見於分式型,指數型,可配合等價式簡化運算。
(E) 作圖
綜合凹性增減性判斷、極值判斷、函數奇偶性判斷
反曲點概念、漸進線求法,善會表格後依表作圖
F.不定積分
沒什麼重點,因為全部是重點…熟悉基本積分運算!
(a) 變數變換法
(b) 分部積分(IBP)
(c) 全角代換法(常用於平方和平方差帶有根號)
(d) 半角代換法(常用於sin, cos與多項式並於分母項)
(e) 其他:積分漸化式
E.積分應用
(a) 微積分基本定理之證明及內涵
(b) Lebniz微積分式(可經化簡為微積分基本定理)
(c) 積分求面積(由函數型態判斷假設方向)
(1)顯函數 f(x), g(y)型
(2)參數表示 x = f(t), y = g(t)型
(3)極座標型
首要畫略圖,求交點,判斷函式大小後,
可能分段積分,莫忘由交點判別上下限,
其餘則是不定積分功力的熟稔。
註:此型題目有時可以Green's Theorem轉為線積分做運算
(d) 旋轉體體積(圓盤法、殼層法、Pappus's Theorem)
同上,需由函數型態判斷列式方向,
小心題給函數無法以顯函式表示時,圓盤法無法得解,
需用殼層法求得(相關例題可見99台大微乙期中)
(e) 形心、重心
熟記定義,列式求解
(f) 旋轉表面積(重點同c,d)
(g) 積分求弧長(重點同c,d)
(h) 瑕積分
熟記各種判別方式和瑕點分類判別,
常見 P 積分、 P 級數斂散和收斂值可背儘量背。
需小心奇函數斂散特性,若單邊發散,則發散,
不會有因為奇函數對原點對稱而必收斂至 0 之現象。
(i) 黎曼和
依循黎曼和的概念:分割、取樣、求和。
並配合高中級數公式求解。
G.多變函數
(a) 求極限值
儘量往極限不存在做思考,善用線性代換、極座標代換、球座標代換
(b) 連續性(同單變數概念)
若具連續性,則有 f = f
xy yx
(c) 偏微分、全微分
善用函數關係樹狀圖以便於 Chain Rule 應用,
此處有個概念:可偏微未必具連續性,但可全微分必連續
(d) 梯度、旋度、散度、方向導數
梯度和方向導數概念務必瞭解,切莫混淆,
此為求解多變數極值、切平面方程式重要基礎,
旋度和散度則需瞭解其定義及物理意義。
(e) 多變函數極值
通常有以下四種方法
(1)極值理論
利用有極值的必要條件 df = 0 求得臨界點(同單變數極值)
再利用 Hessian Matrix 判別極大極小或鞍點,
雙變數則直接套用判別式 D = f f - f ^2 做判別
xx yy xy
(2)柯西不等式
(3)算幾不等式
(4)拉格朗日乘子法(Lagrange Multipier)
若題目含有限制條件時優先考慮,
注意目標函數、限制函數、拉格朗日函數的選取與假設。
註:有題目需討論邊界點及內部點,需注意!
H.重積分
(a) Fubini's Theorem
(b) Jacobian 座標轉換(球座標、極座標、廣義座標,有時須轉換多次)
需熟稔的是變換積分次序後的上下限該如何判別,
善用繪圖和不等式運算。
I.數列與級數
(a) 數列
數列收斂和發散之定義,可配合極限一併研讀,
可稍稍閱讀高中等比數列和等差數列。
(b) 級數斂散
正項級數,熟練各種判斷方法。(熟記 P 級數)
交錯級數,同上,並需知曉萊布尼茲收斂條件
(c) 收斂區間、收斂半徑
由級數型式配合根式檢驗、比值檢驗法求收斂半徑,
依此可得初步收斂區間,再代入邊界點檢驗斂散,
可得真正斂散區間。
(d) 級數求值
(e) Taylor's Theorem, Maclaurin Series
記憶泰勒展開型式,並瞭解馬克勞林級數與其關係(展開點 x = 0)
此處有求近似值和求其級數展開,
需熟記常見之級數,證明則由定義出發,
或採已知級數做四則運算(如tanx = sixx/cosx)
或採無窮等比級數展開配合積分(如arctan x)
或採二項式展開配合積分(如arcsin x)
J.向量微積分
(a)線積分
純量函數線積分,向量函數線積分(可拆為多項純量函數線積分求解)
(b)積分路徑相關性
即函數是否具保守性(利用旋度是否為 0 判斷)
配合路徑變形原理的應用(挖洞與否?)
(c)Green's Theorem, Stoke's Theorem, Gauss Divergence Theorem
熟記其公式,題目多為基礎公式,
並需瞭解其物理意義,和使用條件
註:此處可一併和微分方程、全微分單元閱讀
瞭解恰當型(Exact)微分方程之求解方法
K.微分方程式
(a)分離變數型
(b)正合恰當型( Exact )
(c)非正合,求積分因子,乘回為正合,再求解
(d)線性標準型,代公式
(e)白努利變換型,轉為標準型後代公式
(f)Cauchy - Euler型
註:此處仍有一小觀念,即齊次函數定義。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.163.90.174
是打錯了XD 順便修一些錯字~
... <看更多>