從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
擴張樹演算法 在 江魔的魔界(Kong Keen Yung 江健勇) Facebook 的最佳貼文
各位魔粉,今天跟大家分享一些科學界能夠啟動免疫和降低血壓的旁門左道方法!
到底行善、狗、大樹、驚嘆感、免疫和血壓有甚麼關係?
在1980年代時,有一位哈佛的研究者在某個早上幫了一個老太太過馬路,幫人過後當然有感受到助人之樂,不少人也會此刻覺得心情變好了,不過這位研究者發現他不只是心情好了,他覺得自己的身體好像也變好了。這位哈佛研究者是一位「分泌型免疫球蛋白A」的專家,因為那一次幫人後的體驗,他決定做一個實驗。
當時是針對上百位的哈佛大學生做的實驗,先檢測了他們唾液裡面「分泌型免疫球蛋白A」的成份,然後一半給他們看關於希特勒的殘酷電影,另一半給他們看一個特麗莎修女關愛窮人的慈善大愛影片。
看完後再檢測他們的唾液時,發現看了特麗莎修女影片的,在唾液裡面的「分泌型免疫球蛋白A」變多了。
這種分泌的功能是口腔裡,免疫力對病毒的第一防線。
而這效應後來也被他們稱為 Mother Teresa Effect(特麗莎修女效應)。
換句話說,這些學生的免疫力提高了,而且效果還維持幾個小時。
我相信這個效應對我們目前的疫情來講,或者是口罩、社距、洗手和打疫苗之外,可以保命的輔助性方法。
我還會說這一位哈佛大學的研究者當年在帶老太太過馬路後,他很自覺的感受到身體上變好,是因為當我們關愛另一個人的時候,助人之樂事會讓我們的身體釋放催產素和一氧化氮。
催產素有保護心臟的作用,一氧化氮是會讓血管擴張,這些對我們的血壓會有正面的影響。
另一個實驗則是要求實驗者心中生起慈愛和惻隱之心,維持5分鐘,之後的「分泌型免疫球蛋白A」也會增加50%。
我覺得這種能夠激發慈愛心的,從上面的幾則故事來看,似乎不管是你看到人家行慈愛、自己行慈愛,甚至是只是激發慈愛之心,這個口腔內唾液的免疫第一防線就會被激發得釋放更多。
而且特麗莎修女效應的激發,不可能只是看特麗莎才有效,就算看虛構的故事,只要是有個角色是能行大慈愛的,應該也能激發口腔裡面免疫防線。
而我們目前網路世代的人,可能這方面會更容易可以做到,網路上不少的影片都有類似的主題。
我記得我以前第一次看宮崎駿的《風之谷》,有一個情節是讓我很感動的,就是女主用身體阻擋如一只大象那麼大的小甲蟲走進硫酸湖,結果硫酸燒傷了她的腳跟,小甲蟲才停了下來。
這裡要歸功宮崎駿的功夫,因為影片開場不久,女主跟一只小鼠類見面時,小鼠的防備心很強,一下就兇猛的咬了女主的虎口。
一咬之下,發現女主沒有反抗而讓牠咬,小鼠反而平靜了下來,然後還舔她的傷口。
這一幕很重要,這個伏筆一早就埋好,到最後女主為救小甲蟲而傷害了自己身體時,那個慈愛的感動效應就飆升得更大了。
所以當時第一次,是看到我冒淚的。之後我發現就算我再看,一樣有同樣的感動,一樣眼泛淚光,甚至幾十年後的今天,我再看這一幕或看它的電影配樂的交響樂表演的影片,一樣在這一幕的音樂也會感動泛淚。
我私測如果有人對《風之谷》做類似的免疫分泌測試,可能也會有「宮崎駿效應(The Miyazaki Effect)」。
宮崎駿另外一個讓我印象很深刻的,是龍貓在夜裡幫那兩位小妹把種子快速長成參天巨樹,我每一次(我重複,真的是每一次)看這一幕時,也是很感動。
這種感動雖然我沒有淚,後來我發現原來科學界有研究。
Paul Piff叫人走路經過一個地方,一半的人經過一座很大的建築物,叫他們停下來觀賞一下這座龐然的建築物,然後他們在繼續行走時,附近就會有人恰巧的掉下了東西。另一半的人所走過的地方,會有一顆參天大樹,他們也是要求停下來觀賞一下那顆大樹,然後繼續走動時,附近又會有一個行人掉了東西。
你可能會問「掉東西來幹嘛?」
這個科學研究所要看,觀賞了建築物或大樹,對於幫人會不會有影響。他們發現看很大的建築物,不會讓他們更主動幫人撿東西。但觀賞了參天大樹的人則遠比看了建築物的,更加積極的幫人。
他們稱這個體驗為 Awe。
當我看到這資訊時,也突然間明白我看龍貓參天巨樹的那一幕,應該就是感受到Awe(魔註:我有限的翻譯能力,暫且翻譯成驚嘆感)
這種驚嘆感之所以會讓人更加的肯幫人,應該是這種體驗會融化掉部份的自我界限,小我開始融入大我,所以很自然的對他人的需求會更敏感、更有惻隱之心。
(魔註:佛家的修行,有四無量心的禪修,把自己的慈愛心放到無邊,目的也是要把小我的界限融化掉。丹道的修行在所謂玄關開的時候,物我兩忘才能感招先天炁,所謂的物我兩忘也更自我界限的融化有關連。)
這段期間如果各位宅在家裡泡劇時,或打了疫苗後為減輕壓力,每個星期不妨回顧一下以前那些有救人而讓你感動的角色吧!
另外的一個實驗是Richard Davidson做的,為人打有感冒病毒的針,掃瞄他們的腦袋,然後觀察身體所生產的抗體。
他們發現掃描到當事人的左邊腦帶比較活躍的話,就代表那個人是比較帶正面情緒,也比較開心,他們的身體生產的抗體量會比較高。反之,如果是右邊腦袋比較活躍,其實就是比較負面,他們生產的抗體是相對的少。(魔註:是的,這完全跟那些相信右腦開發的相反,因為右腦開發其實在科學界是不存在的)
基於此,不幸被感染的朋友,或者上網去泡那些可愛小貓狗或小孩的影片,身體的抗體產量可能會受好心情強化。
而且在一些國家的醫院,他們有時候會派出寵物狗跟病人打招呼,當中一個研究是只要人摸摸寵物貓狗的頭幾下,你的身體也會釋放催產素,血壓也是會下降,因為你的心情會被狗狗弄的更放鬆。
當然,另外一個會釋放催產素的方法,就是抱著你的愛人。
不過如果你很討厭你另一半的話,勉強抱著他可能會啟動壓力,大家自行斟酌吧!
另外如果你剛打了疫苗,衛生局是建議一個星期內不要有劇烈運動。所以你記得不要抱了抱,然後接吻,然後你伸手摸她的胸部,她伸手捉著你擼,你的手指又伸進去……
總之,疫情期間,除了我們應該都要做的防護,在家的時候,不妨有愛人的話,就多抱抱;有寵物的話,就多摸摸;有讓你感動的慈愛助人救人的電影角色,就多泡泡;家附近有參天大樹或美景,就多嘆嘆!
#江魔設教
#廣渡魔粉
如果覺得我的文章有幫到你,你可以隨緣樂捐,打賞個小費給我吧:http://paypal.me/kongdemon
不打小費的話,麻煩幫忙點讚分享,好讓演算法幫我推文!
擴張樹演算法 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
1949-2019:中國硬科技終迎來黃金時代
本文來源自CV智識
……………………………………………………
┃從達特茅斯的夏天到中國科技的“春天”
上世紀 50 年代,中國剛剛從槍炮與戰爭中站立起來不久,滿目瘡痍,百廢待舉,科技尤其如此。國內專門的研究機構一度不超過 30 多個,全國科技人才一度不足 5 萬人。
同一時期,大西洋彼岸的美國也正歷經一段黃金歲月。儘管存在核滅絕、種族隔離和迫在眉睫的冷戰的威脅,但上個世紀 50 年代仍然被視為美國歷史上幸福和繁榮的時代。
1956 年夏季,新罕布什爾州漢諾威小鎮,達特茅斯學院群星閃耀,一群來自各大研究機構和科技公司的科學家們聚在一起,共同研究了兩個月,目標是“精確、全面地描述人類的學習和其他智慧,並製造機器來類比”。
這是人類近代歷史上,頂級科學家們第一次如此齊活地聚在一起,就機器智慧問題進行探討,也正因為此,達特茅斯會議後來被公認為人工智慧的起源。
與達特茅斯會議幾乎同一時期,參會的西蒙、紐厄爾和第一屆圖靈獎得主艾倫·佩利(Alan Perlis)一起創立了卡內基梅隆大學(Carnegie Mellon University,CMU)的電腦系,從此,CMU 電腦系成為電腦科學和人工智慧研究的高地。
80 年代,一批懷抱“遠大的理想、志向、抱負和對新事物的追求”的中國學生陸陸續續來到 CMU 電腦系,向人工智慧先驅們拜師問道。
這些年輕人,包括曾經活躍于谷歌的李開復,百度的陸奇,前微軟亞洲研究院院長沈向洋,現任微軟亞洲研究院院長洪小文。
而一些當時沒有選擇 CMU 的年輕人,如電腦視覺華人鼻祖黃煦濤、2000年圖靈獎得主姚期智,則在同樣散佈在東部學術高地的各個頂尖實驗室裡。
90 年代,當時只有二十出頭的中國年輕人湯曉鷗,剛剛從中科大資訊科學技術學院畢業。此後,他沒有選擇繼續留在母校,而是來到歷史悠久,學術輝煌的美國東北部繼續求學深造。
新千年之初,深度學習技術已然取得重大突破,卻還沒有迎來屬於它的高光時刻,在李開復、沈向洋、湯曉鷗等人之後,更多的年輕人開始來到東部各大高校的實驗室裡深造。
2006 年,時年 25 歲的周曦揮別呆了七年之久的中科大,進入伊利諾大學香檳分校(UIUC),成為華人電腦視覺大師黃煦濤當年在全球招收的三位學生之一。
當時的中科大已然成為國內眾所周知的語音研究高地,頭部語音AI公司科大訊飛和雲知聲創始團隊均來自中科大。
周曦想要做更有挑戰的事情,他對當時在中國發展仍然很不充分的圖像識別技術產生了極大的興趣,而美國恰好擁有當時獨一無二的圖像識別研究環境。
他很快在UIUC搭建了Cluster伺服器陣列,將語音辨識領域的演算法跟思想與圖像識別領域巧妙交叉碰撞。此後的幾年,周曦跟團隊先後戰勝 MIT、東京大學、IBM、Sony等著名研究機構,拿到六次世界智慧識別大賽冠軍。
而在 2006 年前後,與周曦一同拜入黃煦濤門下的,還有依圖的顏水成,文遠知行的韓旭和甯華中、文安智能的陶海、奇點汽車的黃浴等人。
學成之後,這批人幾乎無人留在美國,而是陸續歸來,把最前沿的尖端科技帶回中國。
┃以外企為師,走向世界
新千年之初的中國,伴隨著改革開放成長起來的 80 後、85 後年輕人,已經告別了衣不蔽體、食不飽腹的最艱難歲月。年輕人們不再需要為解決溫飽問題發愁了,整個社會的創新力與活力隨之開始釋放。
2000 年,世紀交疊,熱鬧的清華園照常迎來一批新的學生,王永瑞便是新生中的一員,此後 8 年,他一直在清華精密儀器繫念書。
畢業之後,王永瑞曾在航太科工四院待過短暫的一段時間,2013 年他加入清華旗下產業啟迪之星,從普通員工做到常務副總經理,從事硬科技創業專案投資孵化工作。從清華到啟迪,王永瑞一直是中國科技創業浪潮的見證者與參與者。
8 年間,偌大的園子內外發生的一切,王永瑞回想起來依然歷久彌新。
彼時的清華人,尚且對創新創業沒有如今天般的熱情,上課、作業,業餘時間搞搞社團,參加參加學生會的工作,學生們常是規規矩矩的,在就業的選擇上同樣如此。
深度學習技術尚未起來,演算法也還不那麼常見,機械類、材料類、晶片類學科仍然冷門,硬科技尚且沒有像今天這樣受到如日中天的追捧。
那是外企在中國最為風光無兩的時代,遍佈望京商圈的是摩托羅拉、愛立信等外企,金輝大廈還不是阿裡的地盤,360 集團也尚未在這裡築起高樓。
“在那個年代整體來講,創業的比例還是小,打工也基本上是去外企的金融公司和互聯網公司,大量的網路設備公司,像愛立信,它並不是國內的企業,還是大的外企。”王永瑞回憶起他求學時期同窗好友們的就業選擇,大量的人才都去了外企互聯網公司和金融公司。
與此同時,國內的互聯網也在萌芽,新浪、搜狐、網易等門戶網站出現,懷抱著好奇的清華人也開始做一些校園網、社群項目的創業。
隋建鋒是清華機械專業的博士生,在園子裡渡過了近十年的學習和工作生涯。雖然一直從事硬科技相關研究,他也見證了清華人在互聯網時代的摩拳擦掌、躍躍欲試。
2008 年,人人網最火的年頭。清華園內,一個叫“師兄幫幫我”的校園社交平臺風雲一時。
苦於解決個人問題的清華理工男們,為了增加接觸女生的機會,做了一個類似于校園版百合網的社交網站,後來越做越大,一時間席捲了北京幾十所高校,甚至誤打誤撞獲得了薛蠻子的天使投資。
隋建鋒親身經歷了“師兄幫幫我”風雲一時的那段日子,而做此項目的正是他的同班同學,“師兄幫師妹去解決問題,問題解決了之後師妹要請師兄吃一次飯,其實它背後的邏輯就是解決男女相處的問題,清華理工科女生偏少男生偏多,這就給大家提供了一個交流的機會。”
“最瘋狂的時候,他們發了好多的券,你註冊了就可以去免費領一個雞腿,推廣得非常火。”隋建鋒覺得,那可能是他距離互聯網創業最近的一次。
遺憾的是,短暫火了一陣之後,由於缺乏真正的商業變現模式,“師兄幫幫我”沒有再繼續運營下去。
但好在,一些年輕人正在成長,已經成長起來的人則聚到了一起,為平靜的中國科研氛圍注入新的活力。
九十年初,中國電腦產業苗頭燃起,而大洋彼岸的軟體巨頭正面臨創新與競爭壓力,微軟前任首席技術官麥爾伏德向比爾蓋茨諫言,將研究院開到中國來。
1998年,微軟中國研究院成立。37歲的語音辨識專家李開復受命成為首任院長。三年後,最初的微軟中國研究院更名為微軟亞洲研究院。
巧婦難為無米之炊,李開復組建團隊之初頻頻受阻,說服海外精英歸國並不容易,卻也不乏慕名而來的熱血青年,張亞勤的加盟成為打開僵局的契機,隨後沈向洋加入,成為團隊的第一個研究員。
1999年,研究院第一批管理團隊逐漸成形,由國內高校博士生和海歸派組成。略微發黃的合照記錄下知春路 49 號的偉大時刻,在往後的十幾年裡,這批人的光熱輻射至大半個中國科技圈。
微軟亞洲研究院,又被稱為MSRA,對於大眾而言,她是個遠不如阿裡、騰訊等互聯網巨頭響亮的名字,即使在人工智慧已然發展得如日中天的今天,她的名氣依然不敵商湯、曠視之類的 AI 獨角獸。
但大眾同樣不知道的是,沒有樹大根深的MSRA,就不會有此後一代又一代的互聯網巨頭、移動互聯網巨頭,再到如今的 AI 獨角獸。
香港科技大學電腦系與數學系教授、前騰訊AI Lab主任張潼曾這樣向筆者談及MSRA對於公司穿越發展週期、基業長青的重要意義。
“研究院有幾個功能,一個功能是它會在短期專案上支援一些產品;另外一個是本身它也會對做一些技術儲備,為開發一些產品做積累;還有一個我覺得挺重要但被忽略的一點,研究院作為公司的人才儲備,在產業迅速變革的時候,這些人才才能產生價值。”
在張潼看來,微軟歷經多輪時代浪潮之而不倒,重回全球市值第一寶座,正與其人才儲備息息相關。
“比如說微軟,”張潼告訴筆者,“它原來就是一個軟體公司,但後來在做搜索的時候,雖然沒有做到Google的程度,卻能夠很快地起來,包括現在做雲計算,它為什麼能夠成為市值最高的公司之一?就是因為技術的儲備、人才的積累,在公司轉型上,如果沒有這些人才儲備,就沒有辦法去做這些事情。”
象牙塔內,學術研究熱火朝天,人才貯備從無到有;象牙塔外,互聯網創業水大魚大、戰事紛呈,已然開啟一個新的時代。
MSRA 建院這一年前後,搜狐、京東、阿裡、騰訊、新浪、網易、百度相繼誕生,外企們應該不會想到,當時還是由一群初生牛犢的中國年輕人創立的幾家門戶網站,或是ebay、Google的“拙劣模仿者”們,在此後的十年裡順勢崛起,直至將他們“掃地出門”。
隨著中國第一波互聯網發展熱潮湧現,中國公司開始為創新事業向矽谷尋找人才、資金,甚至包括公司命名的方式。
把別人的成果直接商用當然會被人詬病,但正是這段經歷讓中國的互聯網公司積累了使用者介面設計、網站架構和後端軟體發展的初步經驗。
三十年河西,三十年河東。
百度的核心功能和極簡主義的設計風格借鑒了Google,但在此基礎上,李彥宏堅持不懈地優化網站,以迎合中國用戶的搜索習慣。淘寶以ebay為師,卻另謀在初期為商家提供免費服務的模式,最終打敗ebay。
曾比作中國版BuzzFeed的位元組跳動,通過機器學習演算法為使用者提供定制化的新聞內容。現在,BuzzFeed的市值也已和位元組跳動不在一個量級。美團的靈感來自Groupon,但其業務線卻從團購一路拓展至電影、外賣、酒店、旅遊等本地生活服務等,現在美團的估值已經10 倍於Groupon。
Google、eBay、Uber、Airbnb、LinkedIn、Amazon……一個又一個美國巨頭都想贏得中國市場,卻無一不鎩羽而歸。
外國分析師在美國公司無法佔領中國市場這個問題上糾結的時候,中國的公司正忙著打造更好的產品。
資本聞風而動,人才循錢而至。
隨之而來的是,風投資金和人才魚貫湧入互聯網行業。市場如火如荼,創業公司的數量呈幾何級數增長。
大多數創業公司的產品靈感或許來自大洋彼岸,和矽谷的競爭的確產生了中國本土的互聯網巨頭,但真正造就了一代創業者鬥士的,卻是外人難以想像的殘酷“本土大戰”。
“如果你去外面看看,你會發現這個世界上最好的市場其實就在你腳下。”這是現如今大多數出海創業者對於開闢海外市場最為深刻的感受。
中國市場競爭的殘酷,讓中國互聯網公司探索出了完善的商業模式和強大的運營能力。
一些在殘酷的“本土廝殺”中成功出局的中國企業,也在海外戰場上開啟了與全球科技巨頭的無限戰爭。
2012 年,隨著智慧手機的出現與普及,中國移動互聯網出海風口開始形成,作為出海先驅,獵豹更是將中國免費工具的模式移到了海外。
2016 年,有更多公司開始把中國模式複製到海外市場,隨著市場的變化,出海的類型開始多樣。
中國企業出海的典範位元組跳動,一方面 Copy From China,將在中國獲得成功的資訊流模式複製到海外市場;另一方面則借助資本的力量在海外展開大肆並購,最終通過技術輸出的方式實現全球擴張。
直到最近兩年,無論是遊戲、內容還是電商類產品,出海的中國公司已經逐漸讓產品達到完全當地語系化的狀態。中企出海,已然歷經從稚嫩到成熟。
┃AI時代:走入無人區
“2000 年的時候,大家更多還是想著錢,怎麼快速賺到錢。”這是王永瑞還在清華念書時,對互聯網帶來的外部環境的極速變化,最為深刻的感受。
但賺到錢的一個好處是,中國的創業者們終於有錢去做些從前囊中羞澀之時難以做到的事情了。
發展硬科技,讓中國在底層研究、前沿科技的突破上真正屹立於世界民族之林,則是大多數中國科學家與技術人心中一顆自始至終都不曾熄滅的種子。
互聯網這十年,伴隨著供應鏈的成熟、市場的培育、人才儲備越來越充足,也為發展硬科技的提供了可能。
王永瑞談到,在清華讀書的這些年裡,周圍很多同學,還是“在互聯網圈裡混。”
到 2008 年畢業時,他明顯感覺到,一些新的變化正在發生,“這個時間段逐漸開始有一些人開始往硬科技的方向去做,慢慢的也有人去做硬科技的創業。”
“硬科技和移動互聯網的區別還是比較明顯的,它區別就是說一個週期的問題,聯網可能你投入就快了,慢的話我就三個月肯定也出來東西了,如果你是做一個硬體產品,週期不會這麼短,還不算你前期的人員、知識儲備以及經驗積累。”
王永瑞談到硬科技時說:硬科技創業雖然週期長、難度大,但這不妨礙越來越多有情懷、有個性、有創造力的工程師們加入進來。
“國內在很多基礎應用工程應用的學科建設,或者說知識儲備過程中還沒有達到,或者說離世界上先進的水準還有一定差距,中國大量的工科學生還是有一種情懷在,真的想把這個 gap 給彌補上來。”
至少在清華園裡,2010 年前後,雙創提出來前幾年,學校、學生們對於將產學研結合,甚至創業的熱情開始變得高漲。
隋建鋒回憶說,那個時候還沒有人工智慧這種說法,“現在的人工智慧、智慧硬體,那個時候我們叫機電一體化,簡單理解就是用各種各樣的方式實現機器人的自動化。”
互聯網風雲十年,是清華人不斷開放、追求變化的十年,而姚班的出現則把這種求變之心放大到一個極致。
打比賽、做課題、搗鼓機器,一些工科生做著做著,就開始了“真槍實彈”的創業。這批人當中,有小馬智行的樓天城,曠視科技的印奇、唐文斌、楊沐,MOMENTA 的曹旭東,深鑒科技的姚頌、單羿,禾賽科技的李一帆……今天,他們撐起了 AI 創業大潮的半壁江山。
2004年9月的一天,正在普林斯頓大學攻讀博士學位的張勝譽像往常一樣與導師姚期智碰面交流近期研究進展。姚期智突然對他說:“我要回中國了,permanently(永遠地)。”
張勝譽後來回憶說:“當時有些訝異,但隨即感到釋然。單純從研究角度講,的確沒有一個地方比普林斯頓更舒服。他回國,應該是要去做一件大事。”
此後不久,姚期智辭去普林斯頓終身教職,正式加盟清華大學高等研究中心,成為清華全職教授,在清華園裡,開啟了人生下半場全新的探索。2005 年,姚期智主導與微軟亞洲研究院共同合作成立“電腦科學實驗班”,姚班由此而生。
姚班初成立時,“教主”樓天城還是剛剛入學“萌新”,還在安徽蕪湖一中讀高三的“怪小孩”印奇,仍然幻想著有朝一日能編織出《終結者》中的天網世界,在後來的人工智慧浪潮中叱吒風雲的姚班少年們,此刻正在園子裡積蓄能量。
八年前,印奇與唐文斌、楊沐下定決心開始人工智慧領域創業之時,人工智慧還遠未成為一個風口,或者說尚且未被完全證明為一股可以改變時代的浪潮。
創業之初,印奇就曾與唐文斌商定,二人同赴美國攻讀博士,印奇專注智慧感測器方向,學的是硬體,唐文斌則繼續研究軟體。三人決定出發之時已然想好,做AI,最終一定會走到做硬體這一步。
而在MSRA的實驗室裡,湯曉鷗依然沉溺于拿兒子照片做人臉識別研究的快樂。此時的湯教授應該還沒有想到,日後不久,他會跑出來創業。畢竟,在以基礎科學研究聞名的 MSRA,誰能實現最多的技術突破,誰就獲得最多尊重。
直到 2012 年,人工智慧以深度學習的面貌重新贏得世人關注,屬於硬科技從業者的創業黃金時代終於來了。
多年來對神經網路根深蒂固的成見讓人工智慧的許多研究人員忽略了這個已經取得出色成果的“邊緣群體”,但 2012 年傑佛瑞·辛頓的團隊在一場國際電腦視覺競賽中的勝出,讓人工神經網路和深度學習重新回到聚光燈下。
在邊緣地帶煎熬了數十年後,以深度學習的形式再次回到公眾視野中的神經網路法不僅成功地讓人工智慧回暖,也第一次把人工智慧真正地應用在現實世界中。
研究人員、未來學家、科技公司 CEO 都開始討論人工智慧的巨大潛力:識別人類語言、翻譯檔、識別圖像、預測消費者行為、辨別欺詐行為、批准貸款、幫助機器人”看”甚至開車。
隨之而來的是,越來越多的學者在這個時候離開象牙塔,一批遠在海外的人也陸續回國,他們要從中得到在學術圈外一展身手的機會,當然也嗅到了商機,還有金錢的味道。
2014 年,湯曉鷗帶著他在港中文多媒體實驗室 (mmlab) 的一眾“門徒”跑出來創業了,取中國歷史上第一代王朝商朝開國君主之名——商湯,商湯科技應運而生。
一批 AI 公司有如雨後春筍般冒出來,不管是 MSRA、清華,還是 UIUC、中科院、mmlab,一代科學家與技術人們,仿佛跟約定好了一樣接二連三地流入尚且年幼的科技創業前沿陣地。
┃AI+5G 時代:細分,落地,紮入產業
造輪子的時代過去了,AI 從發明的年代邁入實幹的年代,從專家的年代邁入資料的年代。
西方國家點燃了深度學習的火炬,但最大的受益者卻是中國。在資料和工程人才方面,中國擁有得天獨厚的優勢。
無論是國際市場,還是國內市場,5G 和人工智慧都備受關注。被冠以“互聯網預言家”的馬化騰,更是公開表示“一個 AI+5G 的全智慧時代正在到來。”
“硬科技真正的突飛猛進,或者說走到了風口浪尖,有幾方面原因,一個是整個供應鏈、市場環境確實更加成熟了,包括很多柔性製造新技術的應用,感測器的不斷小型化,包括智慧硬體底層的技術系統的開發,一些主晶片的小型化,這一系列的技術,搭建得比較成熟了。”
硬科技的發展,則是跟隨著技術、市場、供應鏈的完善水到渠成的結果,而硬科技專案越來越受大家追捧,同樣是這個時代自然而然的發展趨勢。
王永瑞明顯感受到,硬科技真正掀起熱潮,是在最近一兩年。人工智慧領域的創業尤其如此。
在經過前期的拼實力、拼融資、拼應用等一系列競爭之後,AI獨角獸們逐漸開始學著做產品,講應用,談落地。
2019 年,大家的目光不約而同地轉向了商業化落地,以及實現規模化收入上。細分、落地、紮入產業,人工智慧的競爭已然進入下半場。
“真的太瘋狂了,什麼華為、阿裡都進來了。”一位 AI 公司的朋友這樣描述今年下半年整個行業的競爭態勢。
隋建鋒談及了他今年經手的兩個印象頗為深刻的項目。
“當時我在北京接觸智慧硬體的專案叫情感記錄儀,像一個小的紐扣一樣配在身上,通過提取人的溫度、心跳來判斷出你的情緒。這項目也經歷過一段時間,最後黃掉了。”
這樣的項目,到底有沒有存在的意義?隋建鋒反問,“你的情緒你高興還是喜悅還是悲憤,你自己肯定會主觀地意識到,還需要用這種智慧硬體來衡量你是高興還是不高興嗎?”
智慧硬體所謂的智慧肯定是服務於硬體,不是為了智慧而智慧,這是隋建鋒從事硬科技專案投資孵化以來最為深刻的感受。
“來到深圳之後我又接觸到一個智慧讀錶盤的專案,它的應用物件就是水錶電錶,每個月要有人去讀這個數,這其實是一個工作量非常大的事情,然後一個團隊專門做了一個讀表儀,一把它放到水錶上,它就能夠及時把資料傳輸出來。”
“做智慧硬體一定離不開應用場景,這是我在北京和深圳感受到的一個非常大的差別,也是目前整個 AI 大的領域特別重要的一個點,一定要找到痛點。”
在更加細分垂直的領域,如醫療、教育、智慧製造、腦機交互,大風口之下,一個個小風口正在形成,一個個小獨角獸正在誕生。
最近一兩年,AI醫療賽道的森億智慧,將製藥時間從8年縮短到幾個月的AI製藥公司 InSilico Medicine,從事類腦晶片研發的靈汐科技,腦機交互產品研發的腦陸科技、優腦銀河等,明顯開始受到資本的青睞。
隋建鋒說,如今 VC 技術化,甚至 LP 技術化的趨勢正變得愈發明顯。“我們在找LP的時候,也傾向於找那些理解技術,能給硬科技創業者帶來更多資源的 LP。”
AI商業化的1.0在雲端,是基於大資料做應用。AI商業化2.0的變化趨勢是從雲端到邊緣,把人工智慧的能力帶到每個人身邊。
5G則是有效連接雲端和邊緣的高速度、高可靠性和低時延的通信管道,可以用最優化的方式實現人工智慧的資源配置。
5G和AI結合在一起一定會進入很多新場景,產生很多新機會。今年4月初, 中國完成首例 AI+5G手術,在400公里外完成“補心”手術,為智慧醫療開啟無限想像空間。
而這些都只是剛剛開始。
┃尾聲:科技人,永遠年輕
最早今年之內,AI獨角獸曠視科技就要在港交所敲響IPO的鐘聲。
曠視終於從 8 年前那個窩在創新工場共用辦公空間小角落裡敲代碼、磨產品的“幾人組”,發展成如今第一個衝刺港股的“純人工智慧公司”。
一個月前,筆者在美麗的西南山城重慶,拜訪了雲從科技總部,恰逢曠視招股書公佈當天,問及雲從研究院院長周翔友商上市一事,周翔打趣著說到,“你看曠視都已經上市了,這個行業肯定不會繼續虧下去了。”
猶記得,招股書發佈當晚,業內一時譁然。
這家年輕AI獨角獸的表現,似乎並沒有此前大家期待的那麼高,對整個行業帶來的影響,吉凶禍福,難以預測。
筆者也就此事詢問了雲從聯合創始人姚志強,他堅定地認為“行業趨勢不可逆。短期內是有泡沫的。任何事物的快速發展,不可能沒有泡沫,它是發展過程中特定階段的產物。”
“但是真正的泡沫是不代表未來,是虛幻的,是一定會帶來沉痛的,但如果泡沫代表未來,那麼短暫的泡沫對未來趨勢影響不大,只要是在大趨勢下的選擇,一定會出現一個偉大的企業。”
在曠視人眼中,印奇不苟言笑,平時總是“端著”,唐文斌則更加外向,和大家聊技術、談人生都不在話下。
印奇也曾坦陳,自己性格比較內斂,在機場碰到客戶,一度會躲著走,直到最近兩年,他開始“強迫”自己主動上去跟客戶打個招呼。印奇一直處在從一個典型理工男努力轉變為合格公司管理者的過程中。
姚志強告訴筆者,“只要是技術男認定的事兒,我們就不會想太多的結果,先卯足勁幹再說。”但“失敗和成功的教訓都指向一個,要接地氣,技術必須為其他行業提供服務,並且能夠真的解決問題。”
王永瑞與禾賽科技的李一帆是同門好友。變形金剛、機器貓、自己組裝的模型,在他的印象中,李一帆的桌面上總是擺滿了各式各樣的機器人。“工程類的東西完完全全地融入到了他的生活,你能感受到那是一種發自內心的喜愛。”
平日裡,依圖科技創始人朱瓏喜歡圍著他辦公室所在的一層樓,一圈一圈地轉,不過,他轉圈從來不是為了監視員工。有關應該如何經營這家公司,他一直在思考。
90後的馬漢東已經是AI醫療公司森億智慧的聯合創始人。員工問他,我們所做的事情到底有沒有意義?馬漢東的回答是,你們直接去醫院裡看一看,我們的設備、應用,救的都是人命。
既身坐冷板凳,又頭頂泡沫,科技創業,可謂路上道道折。但創業者們從來沒有懷疑過這其中的價值。
幾十年的發展也有力地證明,科技公司的力量正變得越來越強大,聚聚了一大批頂尖科技公司的中國力量也越來越難被取代。
中國的科技公司,歷經了從無到有,又從Copy to China到Copy from China的大時代。直至如今,一些重要領域已然躋身世界前列,這是近代以來從未曾有過的重大改變。