最近第一次段考完,很多不認識的家長都在詢問理化課程,但因為我沒有多餘的上課時間了,這次拒絕掉有些多人,真抱歉!!(這次考完特別多是新竹的家長在問)…而且蠻有趣的,這幾年來也發現台北跟新竹的家長們真的大大不同~
分析結果好像是因為新竹第一志願太好考了…哈! 好啦~這樣壓力也小😂😂(但只要是我學生,我都會想把您們程度拉到最好,哪地區都一樣,除非您不想∼)
廢話不多說,到底理化需要什麼基礎? 為什麼有很多國一或小六要來報我台北理化寒假班,我第一句話就問,小孩數學在校大約幾分?原因很簡單,就是因為理化需要一點點數學的基礎,當然比數學計算簡單許多,但有些觀念你還是要會,所以你可以去觀察,小孩數學基礎不太好的,理化相對就拉得比較辛苦,那我要學好理化到底需要哪些基礎?(基本上你小六數學都有90以上就不用擔心)
國二部分:
1. 要會解未知數(交叉相乘的概念要會,而且要很熟)
2. 繁分數的除法概念要有(ex:5÷1/12=?)
3. 單位換算,很複雜的也要會!! (拜託!這明明就是國小學的阿…但我發現有超過八成以上的學生這邊都卡關),單位換算會跟著理化一輩子…👀
4. 何謂正比? 何謂反比?
5. 比例關係,比值關係(包含分數的計算)。這也是小學的呀~~(我有教考私中的國小數學所以不要騙我,絕對有教)
6. 規則體的體積計算(ex:圓柱體,正方體…..)所有都要會,也是小六學的
7. 速度=距離÷時間
以上是最基本的觀念,也是要學好理化最根本的基礎,若孩子現在還是小六或國一。請務必叮嚀小孩呀!! 不然理化老師很累 🤣🤣
*********************************************
如果你國二考得還不錯,但這次國三考不好有幾個可能:
1. 你還沒抓到國三的讀書時間的分配,你可能沒花很多時間念,也許是因為你學校平常要考太多國二的地方,以至於你念國三進度的時間變少很多
2. 國二下很多化學,所以不會計算的同學,可能硬背還有點分數,但國三全都是物理(全是計算)不要懷疑,一整年都是物理了,要面對現實阿~~
3. 考前1.2天才給我急著做一堆題目,沒問懂是沒有用的,你到不如把之前錯的重看一遍(我發現很多學生喜歡做新題目,錯的就不管他,舊的題目錯了較他重算,跟要他們的命一樣.…)
考完重新調整步調,大家繼續加油囉!!👍👍
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
柱 體的體積 題目 在 李傑老師 Facebook 的最佳解答
9年級會考生看過來!!!
台大補習班 數學名師群
精心整理的數學重點 超有用
仔細研讀 必考高分
Go go go go go go ……
來來來,筆記本準備好,
數學科致勝關鍵一次掌握!!
有看沒有懂的部分,
趕快利用時間釐清清楚~~
數學科會考30天衝刺重點
針對國中會考數學科考前準備:
會考難度為難易適中,較刁鑽的題目並不會出現太多,建議先把基本觀念及基本題型做熟,再來鑽研進階的題型。
會考考試時間80分鐘,總題數約25-30題,所以同學平時練習就必須習慣限時練習,才能適應考試時的做答速度。
考試的叮嚀:
考試難度難易適中,而且考題順序有先易後難的趨勢,所以前面做答不要花過多的時間,以免後面考題無法完成做答,再來非選部份盡量不要繳白卷,非選採取部份給分,重點在於解題的策略與表達,表達出解題策略越完整分數越高,所以非選記得務必盡量做答。
1.正負數與數線:
(1)「絕對值」代表「到原點的距離」、「相減取絕對值」
代表「兩點距離」
(2)科學記號的應用問題通常都會搭配四則運算
(3)新舊數線轉換切記「差成比例」
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練!
3.分數:
(1)四則運算切記「先乘除,後加減,但次方優先!」
(2)括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
應用題考列式
5.二元一次方程式:
(1)加減消去法
(2)代入消去法
(3)應用題
6.坐標平面:
(1)基本的象限考正負;點的移動x右加左減,y上加下減
(2)水平線y相同,鉛直線x相同
(3)二元一次直線方程式畫圖!
7.比與比例:
雙比例問題,務必調整到符合題意
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
(1)基本的一元一次不等式求x範圍
(2)乘除負數須變向
10.乘法公式與多項式:
(1)乘法公式求值請觀察數字之間的關聯性
(2)多項式長除法
(3)因式倍式關係。
11.二次方根與勾股定理:
(1)基本的化成最簡根式、有理化、四則運算
(2)根號估計
(3)勾股定理搭配幾何一起考
12.因式分解:
(1)提公因式
(2)十字交乘
13.一元二次方程式:
(1)因式分解求x
(2)配方求x
14.等差數列:
(1)基本的循環用除法看餘數
(2)等差數列換首項公差處理
(3)等差數列求和
15.平面幾何:
(1)對稱圖形
(2)外角定理
(3)中垂線性質到兩端點等距、角平分線性質到兩夾邊等距
(4)30度-60度-90度 邊長比「1:根號3:2」
16.三角形:
(1)三角形兩邊之和大於第三邊
(2)大角對大邊小角對小邊偶爾會出
(3)三角形的全等證明
17.平行與四邊形:
(1)平行時,同位角、內錯角相等,同側內角互補
(2)遇梯形常做的幾種輔助線
18.相似形:
(1)AA相似
(2)相似形的「對應角相等」、「對應長成比例」
、「面積比等於對應長度平方比」
19.圓形:
(1)扇形、弧長、弓形
(2)相切要想到垂直與切線段等長
(3)圓周角、弦切角
20.三角形的三心:
(一)外心:(1)到三頂點等距
(2)直角三角形外心在斜邊中點
(二)內心:(1)到三邊等距
(2)r的兩種求法請複習
(三)重心:(1)中線長度比為2:1
(2)面積六等分
21.二次函數拋物線:
(1)開口的方向和大小
(2)配方法求頂點求最大最小
(3)平移要想到看頂點的移動
22.立體圖形:
(1)展開圖還原
(2)柱體的體積與表面積
23.統計:
(1)盒狀圖和圓餅圖的四分位數
(2)次數分配圖呈對稱,平均數和中位數會相等!
24.機率:
(1)列表討論
(2)畫樹狀圖
柱 體的體積 題目 在 閃亮亮歷史天后 葉施平 Facebook 的最佳解答
來來來,筆記本準備好,
數學科致勝關鍵一次掌握!!
有看沒有懂的部分,
趕快利用時間釐清清楚~~
數學科會考30天衝刺重點
針對國中會考數學科考前準備:
會考難度為難易適中,較刁鑽的題目並不會出現太多,建議先把基本觀念及基本題型做熟,再來鑽研進階的題型。
會考考試時間80分鐘,總題數約25-30題,所以同學平時練習就必須習慣限時練習,才能適應考試時的做答速度。
考試的叮嚀:
考試難度難易適中,而且考題順序有先易後難的趨勢,所以前面做答不要花過多的時間,以免後面考題無法完成做答,再來非選部份盡量不要繳白卷,非選採取部份給分,重點在於解題的策略與表達,表達出解題策略越完整分數越高,所以非選記得務必盡量做答。
1.正負數與數線:
(1)「絕對值」代表「到原點的距離」、「相減取絕對值」
代表「兩點距離」
(2)科學記號的應用問題通常都會搭配四則運算
(3)新舊數線轉換切記「差成比例」
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練!
3.分數:
(1)四則運算切記「先乘除,後加減,但次方優先!」
(2)括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
應用題考列式
5.二元一次方程式:
(1)加減消去法
(2)代入消去法
(3)應用題
6.坐標平面:
(1)基本的象限考正負;點的移動x右加左減,y上加下減
(2)水平線y相同,鉛直線x相同
(3)二元一次直線方程式畫圖!
7.比與比例:
雙比例問題,務必調整到符合題意
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
(1)基本的一元一次不等式求x範圍
(2)乘除負數須變向
10.乘法公式與多項式:
(1)乘法公式求值請觀察數字之間的關聯性
(2)多項式長除法
(3)因式倍式關係。
11.二次方根與勾股定理:
(1)基本的化成最簡根式、有理化、四則運算
(2)根號估計
(3)勾股定理搭配幾何一起考
12.因式分解:
(1)提公因式
(2)十字交乘
13.一元二次方程式:
(1)因式分解求x
(2)配方求x
14.等差數列:
(1)基本的循環用除法看餘數
(2)等差數列換首項公差處理
(3)等差數列求和
15.平面幾何:
(1)對稱圖形
(2)外角定理
(3)中垂線性質到兩端點等距、角平分線性質到兩夾邊等距
(4)30度-60度-90度 邊長比「1:根號3:2」
16.三角形:
(1)三角形兩邊之和大於第三邊
(2)大角對大邊小角對小邊偶爾會出
(3)三角形的全等證明
17.平行與四邊形:
(1)平行時,同位角、內錯角相等,同側內角互補
(2)遇梯形常做的幾種輔助線
18.相似形:
(1)AA相似
(2)相似形的「對應角相等」、「對應長成比例」
、「面積比等於對應長度平方比」
19.圓形:
(1)扇形、弧長、弓形
(2)相切要想到垂直與切線段等長
(3)圓周角、弦切角
20.三角形的三心:
(一)外心:(1)到三頂點等距
(2)直角三角形外心在斜邊中點
(二)內心:(1)到三邊等距
(2)r的兩種求法請複習
(三)重心:(1)中線長度比為2:1
(2)面積六等分
21.二次函數拋物線:
(1)開口的方向和大小
(2)配方法求頂點求最大最小
(3)平移要想到看頂點的移動
22.立體圖形:
(1)展開圖還原
(2)柱體的體積與表面積
23.統計:
(1)盒狀圖和圓餅圖的四分位數
(2)次數分配圖呈對稱,平均數和中位數會相等!
24.機率:
(1)列表討論
(2)畫樹狀圖