恁早 anˋzo(客語:早安)
防疫期間,「長照機構」一直是讓許多鄉親擔心會產生群聚的場所! 上官實際走訪位於竹東的長安老人養護中心,發現內部清潔有序,並注重防疫細節、確實執行體溫量測,現場的服務人員與內部的長照長輩們也都緊戴口罩並保持空曠,大家應該可以好好放心!
上官除了在日前竹東地區傳出染疫案例時,立即要求縣府、主管機關進行照護中心的消毒之外,這次參訪的目的,更是要為民檢視防疫成績,當然做得好必須給予肯定、做不好我們要嚴格要求檢討,還好結果令人相當滿意! 上官也捐贈了「長輩加菜金」與「防疫物資」,給予鼓勵與感謝~
各位民眾如果有任何需要上官幫助、審視、稽核的地方,歡迎私訊或留言,讓上官為大家服務,永遠站在第一線!!!
#防疫 #長照中心 #新竹縣 #竹東
同時也有3部Youtube影片,追蹤數超過12萬的網紅朱學恒的阿宅萬事通事務所,也在其Youtube影片中提到,大家就把這個精華篇當作快速用聽的了解新冠病毒目前主要變種的有聲書吧! 目前新冠病毒的變種已經多到你都快要沒辦法跟上 它到2020年1月底的時候 統計出來是全球異變的COVID-19有3931種 這一個病毒沒有在跟你開玩笑的啦 這個病毒呢它的目的就是不停的變異 那最先出現的病毒株 就是我...
稽核目的 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
銀行如何提供超級個人化服務?百人數據團隊靠AI打造中信腦
為了顧及全產品、全客群、全通路、全覆蓋,中國信託採取的對策是走入AI與大數據,更為發展AI應用訂下3大KPI,來掌握研發資源的最適化;今年,中信更成立數據治理委員會,希望將數據治理走向更全行化的關鍵議題
文/李靜宜 | 2021-06-10發表
「透過科技力,來創造競爭力。」中國信託銀行數據暨科技研發處處長王俊權,用一句話點出中國信託大力發展AI與大數據的戰略核心。
3年多前,中國信託定調以AI與大數據作為主要發展方向,並成立了數據研發中心,要用AI來加值業務場景的服務與產品。設立初期僅有一人,到現在已擴大為百人團隊,更在2020年初正式提升為數據暨科技研發處。王俊權正是該團隊的一號員工,更是中國信託內部大力推動AI與大數據的關鍵人物。
中國信託的經營策略是,顧及全產品、全客群、全通路、全覆蓋。而為了守住既有的優勢,中信採取的對策是走入AI與大數據,來作為轉型的利器。不只要轉型,王俊權表示,中信更希望透過AI與大數據,孵化出不同於以往的經營模式。
「CTBC+AI」是中國信託發展AI的大方向,在各業務線上,都能將既有的經營方法加上AI,來提升效率與效能,更要以這樣的科技力創造競爭力。更以優化、平臺、全面、轉型、顛覆這5大階段任務,往下推動AI。
王俊權解釋,中信的策略是,從最小且最有把握的項目開始,所以,透過AI來優化既有的經營方式,是中信切入AI的第一項任務。運用AI優化的專案成功後,下一步,中信就能將AI技術進一步平臺化;有了平臺之後,就能將AI技術全面導入到銀行。
走過了優化階段、平臺階段到全面發展階段,AI已經落地到中信的金融場景,也陸續有了一些階段性成果。王俊權表示,中信現在聚焦「轉型」與「顛覆」,希望透過AI幫助組織轉型,最終期待是要用AI提出顛覆的想法,創造新的經營模式,他透露,目前已有幾個專案正在進行中。
依循著CTBC+AI這項大主軸,中國信託打造了「中信腦」,定調3條研發路線: 電腦視覺、自然語言處理(NLP)、機器思考,也成立了3大實驗室,聚焦研發6大AI應用核心,包括了精準行銷、市場預測引擎、文字與文件辨識應用、人臉與物件辨識應用、機器閱讀到機器對話。從應用場景來看,則鎖定營銷經營、流程優化、風險控管這3項。累計至今,中信在業務單位落地的AI專案超過了20個。
第一類應用場景的AI,中信稱為「營銷經營+AI」,囊括個人化推薦、需求預測,目的是協助增加收益,並提升客戶滿意度、客戶資產、新申購產品數等。王俊權提到,像是推薦引擎專案,中信金控整體客戶數有1,100多萬戶,產品與通路又多,需要透過AI推薦引擎來實現精準行銷,預測顧客未來的金融需求,才能進一步推薦。中信也將這類預測技術,應用到金融商品的預測,比如房價預測、股市預測、匯率預測等。
「流程優化+AI」則是中信第二大類應用場景,包含法金作業流程、客戶申請流程、線上作業流程,希望用來協助內部提升作業效率,來減少作業成本,最終目的也同樣要能夠提升客戶滿意度。 目前,中信內部有多項端對端的流程數位化專案,像是個金、法金、AML(反洗錢)、HR等業務,都有導入AI來優化既有流程。
最後一類場景的應用是「風險控管+AI」,則應用在AML作業、偽冒偵測、稽核,來改善內部作業效率,減少風險的損失。比如,王俊權提到,前年底,中信銀行上線了一套用自然語言處理技術分析負面新聞的平臺,這個AI反洗錢專案的成果,後來更從臺灣擴大應用到7個國家的海外分行。
王俊權表示,3大實驗室所負責的6大AI核心,就是沿著這3大類應用分頭進行,其中,因為銀行面對數位化的壓力較大,所以,又以銀行為應用主力,再逐漸將AI技術擴大到金控旗下子公司,如投信、台灣人壽、中國信託資融等。
自行培養AI研發能力,更訂定3大AI管理KPI
AI發展策略上,中國信託除了自主研發,也會與廠商協作。不過,這兩種策略該如何拿捏,中信內部也走過一段辯論的路。王俊權表示,最後的判斷依據是,「金融業需要的核心能力,中信會投入有限的研發資源。若不是中信認為的核心能力,則盡可能用市場上的解決方案,來加快回應市場的時間。」
舉例來說,銀行業使用分析模型並非新鮮事,AI技術與傳統統計回歸最大的不同是,能夠處理大量非結構數據,像是人臉、電文等資料,可是,這些數據機敏性較高,如果銀行不能自行掌握技術,而需委外,王俊權認為,第一個問題就是,銀行創新的保密性較弱,再者,廠商進入銀行接觸到如此多的機密性資料,有時也有法遵問題。
尤其,金融業對個資的管制嚴格,非結構化資料很難離開金融業,但是,在臺灣,許多AI技術原廠來自海外,對於銀行來說,整體應用或導入的彈性都相對較低,這些都是中國信託選擇培養自家AI研發能量的關鍵因素。
中信在AI應用發展策略,更訂出3大關鍵績效指摽(KPI),作為研發資源最適化的參考。王俊權表示:「對資源有限,需求無限的單位而言,研發的管理是一大關鍵。」首先,中信不會輕易增加AI生產線,因每開一條生產線就會涉及維運與資源分散的議題。所以,「AI生產線的管理」是第一項KPI。
「AI研發資源調度的管理」是第二項KPI。王俊權提到,資源有限狀況下,應該分配多少資源,投入短期的落地變現,還是長期的亮點顛覆,「是一種決策的藝術。」過去,中信希望AI可以迅速擴大到各單位,所以,王俊權採取80/20法則,將80%的資源用在短期落地變現,讓大家有感,保留20%在真正創新的研發。不過,他表示,這個比例每年或每季會進行調整,要讓研發資源投入到需要的地方。
第三項KPI則是「核心複用的比率」,也就是同一項核心技術盡可能重複利用的比率。王俊權要求研發團隊,每條AI生產線至少要有3個落地應用。目前,中國信託共有6條AI生產線,以及20幾個AI落地應用的專案,他提到:「平均每條AI生產線,有3~4個核心複用。」未來,更希望將每個AI核心,擴大到金控內各個應用,所以,要盡可能提升核心的複用,他對團隊的期待是,能提高到兩位數的複用率。
他進一步舉例,3年前,中信導入工研院智能文審技術,來辨識客戶申辦信用卡、貸款所需檢附的財力證明,像是存摺、扣繳憑單等金融常用的固定格式文件。去年,中信將文字辨識應用,複用到分行的場景,上線AI票券辨識服務,在審票機中加入AI、OCR技術來辨識支票,來減少櫃員人工審票與顧客等待的時間,及提升作業人員登打的產能。
目前,中信已做到一張支票上的7個要件,包括到期日、抬頭人、金額、禁止背書轉、發票章讓章或手寫、背書、帳號,都能夠用AI辨識。王俊權提到,中信將自行研發的印刷體的文字辨識核心、手寫英數的AI辨識核心、文印鑑辨識技術,通通導入支票辨識上,「這就是一種AI核心的複用」。此外,為了持續優化辨識正確率,中信更導入AI反饋機制,內部自己發展出標記功能,來改善標記效率,長期目標是達到9成的辨識正確率。今年,中信預計將該AI應用擴大到22家分行。
中信還有另一項AI核心應用是人臉與物件辨識應用,王俊權坦言:「人臉辨識技術,對於組織的轉型與顛覆是亮點有餘,可是力道不足。」不過,若能結合防偽能力及數位流程,可能會創造出藍海的新應用。中信正在思考,如何運用人臉辨識、活體辨識、微表情辨識、情緒辨識等AI核心,交錯組合來打造遠端核身相關應用。
金融業需緊跟科技的腳步,轉變為自身的競爭力,才能在指數型成長的趨勢下,站上領先地位。AI與大數據,正是下一波競爭力的最大利器。─── 中國信託銀行數據暨科技研發處處長 王俊權
推動超級個人化服務,中信靠大數據建立5大行銷策略
「中信銀行每個月有1.5億筆的金融數據,1.9億筆的非金融數據。更可觀的是,疫情期間,顧客更加喜歡使用數位服務,每月高達2億筆的顧客數位數據。」王俊權首度揭露了中信內部統計的海量數據。不只如此,中信銀行1年與顧客會有20億次的行銷溝通,顧客造訪行動銀行、網路銀行或到行銷網頁觀望的次數,更是高達16億次。
「中國信託的數據含金量很高,因此,全都要採集起來,作為銀行KYC的關鍵第一步。」他提到,光在2017年到2018年這段期間,中信內部就採集了大量數據,來建立360度客戶全景標籤。即便,當時各個單位已有自己的全景標籤,中信仍認為要有一個可以全行共用的主數據庫。
有數據來了解顧客,銀行就能出手,中信的策略是以數據掌握顧客人生不同階段需求,提供超級個人化服務。王俊權表示,中信策略是運用AI與大數據,透過個人化溝通方式,來提升顧客的成交機會。中信更先將這種作法,落地到銀行的「艱困區」,若在艱困區測試後有成效,再轉移到「黃金區」主戰場。「一方面不會影響到既有的業務動能,另一方面團隊也會比較有信心。」
在推動超級個人化服務,中信採取了5大行銷策略,並各自搭配合適的AI技術。第一項策略是使用最適合的通路對不同顧客溝通;第二項是尋找顧客有興趣的話題來互動,王俊權透露,今年底將從人工轉為全自動化,用AI生成銀行與顧客行銷的文案。
選擇對的時間,則是第三項策略,比如,當外幣跌到一定數值時,跟該名顧客歷史申購外幣的成本有競爭性,就能在此時發送推薦資訊給顧客。
第四項策略則是打造貼合顧客需求的產品,他提到,中信已有不同產品的預測模型,能預測未來3個月或1周後,該名顧客可能需要的產品。可供業務單位、EDM數位行銷,來聚焦其中高成交率的顧客。最後一項策略是對的活動,即便是賣同一項產品,不同活動的優惠或行銷設計都要不一樣。
王俊權認為,不僅不要過度叨擾顧客,更希望提供一次就能擊中顧客的服務。甚至,目標是做到自動化行銷,他透露,目前正在建置平臺的階段,除了要能自動採集數據,更要自動反應顧客下一步的預測,讓銀行出手可以更快,或盡可能減少PM或行銷出手時會遇上的人工斷點,甚至,讓每次出手後的反饋可以更為即時,來推動多波段行銷。
成立數據治理委員會,優先梳理2類數據
「數據治理是比下水道還要更下水道的底層工程。」特別對於大型金融機構來說,海量的數據勢必要有與過往不同的梳理方式,王俊權如此說著。
因此,今年中信銀行成立了數據治理委員會,由總經理親自主持,各個業務單位主管都參與,「希望將數據治理走向更全行化的關鍵議題。」他坦言,今年是試行階段,但中信已經注意到這個趨勢,而且必須往這方向走。
中信在數據治理特別強調「以用為治」,去年,更研究了全世界數據治理做得較好的企業,比如,數據治理發展超過20年的華為。王俊權坦言:「對中信而言,數據治理既然是一場長期抗戰,就必須明確為何而戰。」
由於資源有限,中信在數據治理的戰略,優先從兩類業務來推動,第一類是不能犯的錯,這類資料的處理一旦犯錯,銀行容忍度很低,如監理報送這類數據就需要優先梳理。另外一類是業務效益較大者,王俊權表示,若沒有好的數據治理標準,業務效益很難有長期的呈現。這是中信今年訂下數據治理的方向,也希望從小開始,慢慢擴大到全行。
經理人小檔案
王俊權
中國信託銀行數據暨科技研發處處長
學歷:臺灣大學國際企業研究所商學碩士
經歷:早年在美國矽谷的科技公司做美股分析,回臺後陸續待過4家銀行,主要負責風險管理;2005年加入中國信託銀行擔任全球個金風險管理處處長,2018年兼任數據研發中心最高主管;現為中信銀行數據暨科技研發處處長,兼任中信金控數據主管
附圖:中國信託銀行數據暨科技研發處處長 王俊權 (攝影/洪政偉)
資料來源:https://www.ithome.com.tw/people/144842?fbclid=IwAR0XaBPczoiqTWTEQH8qHfNDbmyyTpA43Akd2gYWhsBbh0oIbWsBNWdF4Fk
稽核目的 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
AI 助陣醫學、防疫,個人隱私難兩全?
2021/06/09 研之有物
規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。
評論
本篇來自合作媒體研之有物,作者周玉文、黃曉君,INSIDE 經授權轉載。
AI 醫療、科技防疫的人權爭議
健康大數據、人工智慧(AI)已經成為醫療研發的新聖杯,新冠肺炎(COVID-19)更將 AI 技術推上防疫舞臺,各國紛紛串聯大數據監控足跡或採用電子圍籬。但當科技防疫介入公衛醫療,我們是否在不知不覺中讓渡了個人隱私?
中研院歐美研究所副研究員何之行認為,規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。
「天網」恢恢,公衛醫療的新利器
自 2020 年新冠疫情大爆發,全世界為了因應危機展開大規模協作,從即時統計看板、預測病毒蛋白質結構、電子監控等,大數據與 AI 技術不約而同派上用場。但當數位科技介入公共衛生與醫療健康體系,也引發人權隱私的兩難爭議。
2020 年的最後一夜,臺灣再次出現本土案例。中央流行疫情指揮中心警告,居家隔離、居家檢疫、自主健康管理的民眾,都不應參加大型跨年活動。而且,千萬別心存僥倖,因為「天網」恢恢,「我們能找得到您」!有天網之稱的電子圍籬 2.0 出手,許多人拍手叫好,但也挑起國家進行隱私監控的敏感神經。
隱私爭議不只在防疫戰場,另一個例子是近年正夯的精準醫療。2021 年 1 月,《經濟學人》(The Economist)發布亞太區「個人化精準醫療發展指標」(Personalised-health-index)。臺灣勇奪亞軍,主要歸功於健全的健保、癌症資料庫及尖端資訊科技。
國際按讚,國內反應卻很兩極。早前曾有人質疑「個人生物資料」的隱私保障,擔憂是否會成為藥廠大數據;但另一方面,部分醫療研究者卻埋怨《個人資料保護法》(簡稱《個資法》)很嚴、很卡,大大阻擋了醫學研發。為何國內反應如此分歧?
中研院歐美所副研究員何之行認為,原因之一是,
《個資法》早在 2012 年就實施,跑在 AI 時代之前,若僅僅仰賴現行規範,對於新興科技的因應恐怕不合時宜。
健保資料庫爭議:誰能再利用我們的病歷資料?
來看看曾喧騰一時的「健保資料庫訴訟案」。
2012 年,臺灣人權促進會與民間團體提出行政訴訟,質疑政府沒有取得人民同意、缺少法律授權,逕自將健保資料提供給醫療研究單位。這意味,一般人完全不知道自己的病例被加值運用,侵害了資訊自主權。案件雖在 2017 年敗訴,但已進入大法官釋憲。
民間團體批評,根據《個資法》,如果是原始蒐集目的之外的再利用,應該取得當事人同意。而健保資料原初蒐集是為了稽核保費,並非是提供醫學研究。
但支持者則認為,健保資料庫是珍貴的健康大數據,若能串接提供學術與醫療研究,更符合公共利益。此外,如果過往的數據資料都必須重新尋求全國人民再同意,相關研發恐怕得被迫踩剎車。
種種爭議,讓醫學研究和資訊隱私之間的紅線,顯得模糊而舉棋不定。何之行指出,「個人權利」與「公共利益」之間的權衡拉鋸,不僅是長久以來政治哲學家所關心的課題,也反映了現代公共衛生倫理思辨的核心。
我們有權拒絕提供資料給醫療研究嗎?當精準醫療的腳步飛也似向前奔去,我們要如何推進醫學科技,又不棄守個人的隱私權利呢?
「精準醫療」與「精準健康」是近年醫學發展的重要趨勢,透過健康大數據來評估個人健康狀況,對症下藥。但健康資料涉及個人隱私,如何兼顧隱私與自主權,成為另一重要議題。
去識別化爭點:個資應該「馬賽克」到什麼程度?
何之行認為,「健保資料庫爭議」短期可以從幾項原則著手,確立資料使用標準,包括:允許退出權(opt-out)、定義去識別化(de-identification)。
「去識別化」是一道安全防護措施。簡單來說:讓資料不會連結、辨識出背後真正的那個人。何之行特別分享 Google 旗下人工智慧研發公司 DeepMind 的慘痛教訓。
2017 年,DeepMind 與英國皇家醫院(Royal Free)的協定曝光,DeepMind 從後者取得 160 萬筆病歷資料,用來研發診斷急性腎衰竭的健康 APP。聽來立意良善的計畫,卻引發軒然大波。原因是,資料分享不僅未取得病患同意,也完全沒有將資料去識別化,每個人的病史、用藥、就醫隱私全被看光光!這起爭議無疑是一大教訓,重創英國社會對於開放資料的信任。
回到臺灣脈絡。去識別化指的是以代碼、匿名、隱藏部分個資或其他方式,無從辨識特定個人。但要達到什麼樣的隱匿保護程度,才算是無從識別特定個人?
何之行指出,個資法中的定義不甚清楚,混用匿名化(anonymous)、假名化(pseudonymised)、去連結(delink)等規範程度不一的概念。臺灣也沒有明確定義去識別化標準,成為爭點。
現行法令留下了模糊空間,那麼他山之石是否能提供參考?
以美國《健康照護可攜法案》(HIPAA)為例,法案訂出了去除 18 項個人識別碼,作為去識別化的基準;歐盟《一般資料保護規則》則直接說明,假名化的個資仍然是個人資料。
退出權:保留人民 say NO 的權利
另一個消解爭議的方向是:允許退出權,讓個人保有退出資料庫的權利。即使健保資料並沒有取得民眾事前(opt-in)的同意,但仍可以提供事後的退出選項,民眾便有機會決定,是否提供健康資料做學術研究或商業運用。
何之行再舉英國國民健保署 NHS 做法為例:英國民眾有兩階段選擇退出中央資料庫 (NHS Digital)的機會,一是在一開始就拒絕家庭醫師將自己的醫病資料上傳到 NHS Digital,二是資料上傳後,仍然可以在資料分享給第三方使用時說不。畢竟有人願意為公益、學術目的提供個人健康數據,對商業用途敬謝不敏;也有人覺得只要無法辨識個人即可。
近年,英國政府很努力和大眾溝通,希望民眾認知到資料分享的共善,也說明退出所帶來的社會成本,鼓勵人們留在資料庫內,享受精準醫療帶給個人的好處。可以看到英國政府藉由公眾溝通,努力建立社會信任。
參照英國經驗,目前選擇退出的比率約為 2.6%。保留民眾某種程度的退出權,但善盡公眾溝通,應是平衡集體利益與個人隱私的一種做法。
歐盟 GDPR 個資保護的四大原則
健保資料庫只是案例之一,當 AI 成為大數據浪潮下的加速器,最周全之策仍然是針對 AI 時代的資料運用另立規範。 歐盟 2018 年實施的《一般資料保護規則》(General Data Protection Regulation,以下簡稱 GDPR),便是大數據 AI 時代個資保護的重要指標。
因應 AI、大數據時代的變化,歐盟在 2016 年通過 GDPR,2018 年正式上路,被稱為「史上最嚴格的個資保護法」。包括行動裝置 ID、宗教、生物特徵、性傾向都列入被保護的個人資料範疇。
歐盟在法令制定階段已將 AI 運用納入考量,設定出個資保護四大原則:目的特定原則、資料最小化、透明性與課責性原則。
其中,「目的特定」與「資料最小化」都是要求資料的蒐集、處理、利用,應在特定目的的必要範圍內,也就是只提供「絕對必要」的資料。
然而,這與大數據運用需仰賴大量資料的特質,明顯衝突!
大數據分析的過程,往往會大幅、甚至沒有「特定目的」的廣蒐資料;資料分析後的應用範圍,也可能超出原本設定的目標。因此,如何具體界定「特定目的」以及後續利用的「兼容性判斷」,便相當重要。這也突顯出「透明性」原則強調的自我揭露(self-disclosure)義務。當蒐集方成為主要的資料控制者,就有義務更進一步解釋那些仰賴純粹自動化的決策,究竟是如何形成的。
「透明性原則的用意是為了建立信任感。」何之行補充。她舉例,中國阿里巴巴集團旗下的芝麻信用,將演算法自動化決策的應用發揮得淋漓盡致,就連歐盟發放申根簽證都會參考。然而,所有被納入評分系統的人民,卻無從得知這個龐大的演算法系統如何運作,也無法知道為何自己的信用評等如此。
芝麻信用表示,系統會依照身分特質、信用歷史、人脈關係、行為偏好、履約能力等五類資料,進行每個人的信用評分,分數介於 350-950。看似為電商系統的信用評等,實則影響個人信貸、租車、訂房、簽證,甚至是求職。
這同時涉及「課責性」(accountability)原則 ── 出了問題,可以找誰負責。以醫療場域來講,無論診斷過程中動用了多少 AI 工具作為輔助,最終仍須仰賴真人醫師做最後的專業判斷,這不僅是尊重醫病關係,也是避免病患求助無門的問責體現。
科技防疫:無所遁形的日常與數位足跡
當新冠疫情爆發,全球人心惶惶、對未知病毒充滿恐懼不安,科技防疫一躍成為國家利器。但公共衛生與人權隱私的論辯,也再次浮上檯面。
2020 年 4 月,挪威的國家公共衛生機構推出一款接觸追蹤軟體,能監控足跡、提出曾接觸確診者的示警。但兩個月後,這款挪威版的「社交距離 APP」卻遭到挪威個資主管機關(NDPA)宣告禁用!
挪威開發了「Smittestopp」,可透過 GPS 與藍牙定位來追蹤用戶足跡,提出與感染者曾接觸過的示警,定位資訊也會上傳到中央伺服器儲存。然而,挪威資料保護主管機關(NDPA)宣告,程式對個人隱私造成不必要的侵害,政府應停止使用並刪除資料。
為何挪威資料保護機關會做出這個決定?大體來說,仍與歐盟 GDPR 四大原則有關。
首先,NDPA 認為挪威政府沒有善盡公眾溝通責任,目的不清。人民不知道這款 APP 是為了疫調?或者為研究分析而持續蒐集資料?而且,上傳的資料包含非確診者個案,違反了特定目的與資料最小蒐集原則。
此外,即便為了防疫,政府也應該採用更小侵害的手段(如:僅從藍牙確認距離資訊),而不是直接由 GPS 掌控個人定位軌跡,這可能造成國家全面監控個人行蹤的風險。
最後 NDPA 認為,蒐集足跡資料原初是為了即時防疫,但當資料被轉作後續的研究分析,政府應主動說明為什麼資料可以被二次利用?又將如何去識別化,以確保個資安全?
換言之,面對疫情的高度挑戰,挪威個資保護機關仍然認為若沒有足夠的必要性,不應輕易打開潘朵拉的盒子,國家採用「Smittestopp」這款接觸追蹤軟體,有違反比例原則之虞。
「有效的疫情控制,並不代表必然需要在隱私和個資保護上讓步。反而當決策者以防疫之名進行科技監控,一個數位監控國家的誕生,所妥協的將會是成熟公民社會所賴以維繫的公眾信任與共善。」何之行進一步分析:
數位監控所帶來的威脅,並不僅只於表象上對於個人隱私的侵害,更深層的危機在於,掌握「數位足跡」(digital footprint) 後對於特定當事人的描繪與剖析。
當監控者透過長時間、多方面的資訊蒐集,對於個人的「深描與剖繪」(profiling)遠遠超過想像──任何人的移動軌跡、生活習慣、興趣偏好、人脈網絡、政治傾向,都可能全面被掌握!
AI 時代需要新法規與管理者
不論是醫藥研發或疫情防控,數位監控已成為當代社會的新挑戰。參照各國科技防疫的爭論、歐盟 GDPR 規範,何之行認為,除了一套 AI 時代的個資保護規範,實踐層面上歐盟也有值得學習之處。
例如,對隱私風險的脈絡化評估、將隱私預先納入產品或服務的設計理念(privacy by design),「未來照護機器人可能走入家家戶戶,我們卻常忽略機器人 24 小時都在蒐集個資,隱私保護在產品設計的最初階段就要納入考量。」
另外最關鍵的是:設置獨立的個資監管機構,也就是所謂的資料保護官(data protection officer,DPO),專責監控公、私營部門是否遵循法規。直白地說,就是「個資警察局」。何之行比喻,
如果家中遭竊,我們會向警察局報案,但現況是「個資的侵害不知道可以找誰」。財稅資料歸財政部管,健康資料歸衛福部管,界定不清楚的就變成三不管地帶。
綜觀臺灣現狀,她一語點出問題:「我們不是沒有法規,只是現有的法令不完備,也已不合時宜。」
過往許多人擔心,「個資保護」與「科技創新」是兩難悖論,但何之行強調法令規範不是絆腳石。路開好、交通號誌與指引完善,車才可能跑得快。「GDPR 非常嚴格,但它並沒有阻礙科學研究,仍然允許了科學例外條款的空間。」
「資料是新石油」(data is the new oil),臺灣擁有世界數一數二最完整的健康資料,唯有完善明確的法規範才能減少疑慮,找出資料二次利用與科技創新的平衡點,也建立對於資料二次利用的社會信任。
資料來源:https://www.inside.com.tw/article/23814-ai-privacy-medical?fbclid=IwAR0ATcNjDPwTsZ4lkQpYjvys3NcXpDaqsmE_gELBl_UNu4FcAjBlscxMwss
稽核目的 在 朱學恒的阿宅萬事通事務所 Youtube 的最佳解答
大家就把這個精華篇當作快速用聽的了解新冠病毒目前主要變種的有聲書吧!
目前新冠病毒的變種已經多到你都快要沒辦法跟上
它到2020年1月底的時候
統計出來是全球異變的COVID-19有3931種
這一個病毒沒有在跟你開玩笑的啦
這個病毒呢它的目的就是不停的變異
那最先出現的病毒株
就是我們剛剛講在2020年1月下旬或2月初出現
D614G就是歐美主要流行的病毒株
那5個月之後就取代了最初的SARS-CoV-2病毒株
這個Cluster 5 那是在丹麥的水貂繁殖場
那第三種病毒株呢是英國
第四個變種就是501.V2
是2020年12月18號在非洲現蹤
然後在南非的三個省份內快速傳遞
我跟你講這個東西台灣也有
而且最鳥的就是
是史瓦帝尼的那個外交官帶來(謝謝你喔)
【所以其實阿這個一線醫護,網友直接講他全家都是醫護
他說應該要修法疫情期間暫停評鑑,用前年的舊評鑑等級讓他不要那操
不然一個評鑑要搞三個月,然後只有醫護人員知道,評鑑事項細到不符合臨床可能。
他直接講他舉的例子喔這是他講的:如果你評鑑要5S連醫護的休息室桌上不能放水杯和便當,是要叫醫護人員評鑑當天餓死嗎
因為護理師離職率今年很高,那我就去問了基層護理師公會:就是因為壓力太大。然後很多時候分配的錢也分配不到
那到了最後,稽核沒有用因為只是增加你年度例行的工作而已
那所以這個就是何不食肉糜,你一邊在防疫一邊說我們要挺醫護 評鑑照做
你評鑑不趕快宣布停,下級單位是要提前準備
不是說超前部署嗎,超前部署,那你怎麼可能不先準備資料
上級單位可以在最後一秒我跟你講說我不評鑑了!
下級單位可以在最後一秒的時候我現在才開始準備?
怎麼可能?!】
阿宅萬事通語錄貼圖上架囉 https://reurl.cc/dV7bmD
【加入YT會員按鈕】 https://reurl.cc/raleRb
【訂閱YT頻道按鈕】 https://reurl.cc/Q3k0g9
購買朱大衣服傳送門: https://shop.lucifer.tw/
稽核目的 在 台南市議員林易瑩 Youtube 的最佳貼文
交通局|
1. 取消禁行機車後續進度在哪裡?
我在去年的總質詢裡曾提出兩個建議,#內側取消禁行機車、#試辦部分路口取消二段式左轉,今年二月,交通局局長到我辦公室和我討論後續進度。其中市府因為專家及市長的顧慮而取消了原本的計畫,改推出替代方案:
採取「#新設機慢車道或混合車道」、「#重新劃設標線增加機車道寬度」、「#開放內二車道」三項策略。
在今天的質詢裡,我再次詢問局長目前計畫修正的執行進度,局長回覆目前進度正在盤點各地路線,並會進一步擴大盤點地區,並預計在今年的七月送道安會報,在八月時開始執行。我會持續為市民朋友們關注進度,確保交通局後續有依承諾確實執行這項改善計畫。
2.機車路權要增進,執法工程應並行!
目前交通局預計進行的方案,其中一項為「#重新劃設標線增加機車道寬度」,這樣的方法在增進機車行車空間的同時,也可能讓開車的民眾更容易臨停,警察部門也應加強執法、取締違停。
我也提醒交通局,倘若這樣的方案實施成效不彰,也應該要適時檢討,讓機車族的權益更被保障。
3.雙層巴士營運要透明,明確設立停損點
台南市觀光雙層巴士在之前的墊付款審查案中,因為營運狀況不佳,我要求要附上具體的盈虧報告以確認實際情形,避免浪費納稅人的血汗錢。交通局長表示之後會將盈虧報告提交出來,我也要求局長對這方面應加強稽核,同時亦會持續關注後續營運資料是否有確實呈報,絕不讓台南市民的血汗錢被浪費!
雙層巴士設立目的在於促進台南觀光產業發展,人民能夠接受市府補助雙層巴士虧損的唯一前提,就是交通局或觀旅局可以提出這些虧損實質促進台南觀光產業的證據,倘若觀光巴士的存在所造成的收益確實可以彌補營運虧損,我才有信心告訴市民,觀光巴士有其存在必要。如果營運不善也沒有實質效益,我認為交通局應該設置明確停損點,該停下的就讓它停下吧!我們還有許多需要預算挹注的地方。
稽核目的 在 黃珊珊 Youtube 的最佳貼文
針對4月1日發生在內湖的托嬰中心案件,這幾天議會其他同仁也陸續提出不少建言,社會局也有所回應,並根據新的事證有了第二波的懲處。在這事件中,除了最難過的父母外,其實台北市政府所謂的評鑑制度,也在這事件中喪失了最基本的公信力。
黃珊珊議員表示,依規定北市托嬰中心每三年至少評鑑一次,108年剛公布最新的評鑑指標,分為行政管理、托育活動以及健康安全三大項以及減分項目與外加項目,其中行政管理有10個評鑑項目,佔了20分,托育活動有25個評鑑項目,佔了40分,健康安全也是25個評鑑項目,佔了40分,每個評鑑項目為1-3分不等,滿分為100分。90分以上為優等,80分以上未達80分為甲等,70分以上未達80分為乙等,60分以上未達70分為丙等,未達60分為丁等。而受委託評鑑的學者專家則大概花半天的時間到現場,進行這總共60個評鑑項目評分。
針對這60個評鑑項目、總分分級制以及評鑑的方式與時間,有沒有需要再檢討的地方?以下有幾點具體建議---
1、 目前僅花半天時間完成60個評鑑項目的評鑑方式,過於形式,也難以看出托嬰中心的完整面貌。具體建議可將評鑑項目與時間分次實施。
2、 評鑑項目中缺少家長的反映意見。應仿效公運處評鑑公車業者將乘客日常反映內容納入評鑑的方式,也將家長平日的建議內容納進評鑑項目。
3、 增加評鑑頻率,從每三年1次改為每二年1-2次。並將評鑑過程及評分細目資訊公開,並且要求托嬰中心將此資訊放置於對外招生的網站。
4、 其實會進到托嬰中心服務的保母、教保員,對這份工作都有一定的熱誠。在相關的研討會中也發現,幼兒園與托嬰中心發生兒虐事件最大的原因其實是壓力。教保員、老師因為長期或當下壓力大,導致情緒失控,進而有了虐童的行為。因此如何增加托嬰中心的工作條件就非常重要。降低現行師生比則考慮給予一定比例的加分,是可以考慮的方向。
5、 其他像設置監視器、開放家長手機連線、社會局不定期稽核等,都能讓提昇評鑑信任度。
最後黃珊珊議員也關心像托嬰中心等社會機構的保險是否足夠。以托嬰中心為例,目前有規調必須強制投保場地公共意外責任險與兒童團保,但兒童團保身故僅為100萬元,是否曾該在要求投保責任險,這樣不僅增加家長保障,某種程度也是減少園方的風險。
稽核目的 在 內部稽核組織 的推薦與評價
本公司設置內部稽核之目的,在於協助董事會及經理人檢查及覆核內部控制制度之缺失及衡量營運之效果及效率,並適時提供改進建議,以確保內部控制制度得以持續有效實施及作為 ... ... <看更多>