【產業表現大公開】#後疫情趨勢
🔗 8 月月報連結:https://pse.is/3kpzwc
MM研究員在蒐集道瓊指數中上百種產業的表現數據後,根據其年報酬% 與月報酬% ,整理出以下四大象限圖。透過以下分析,你將了解各產業在強弱之間的變化!整體內容承接八月月報,未來行情有幾大趨勢:
1️⃣ 生產力循環下,科技類股有長期投資的價值。
2️⃣ 從美國與歐洲最新非製造業NMI數據來看,Delta疫情不影響整體服務業復甦,但投資上仍要留意受疫情影響較大的產業(旅遊、航空)。
3️⃣ 製造業循環有望持續至Q3,但未來一季需留意幾項循環末端的轉折指標,如:台灣電子出口 、PMI與美國客戶端庫存 。
PS. 以下提到的產業表現報酬率請看留言~
▍維持強勁的產業:科技、服務
科技產業:近期股價仍然維持在最強的第一象限,從電子零組件到終端軟體、網路股票指數均優於大盤。M平方在最新的科技產業報告中提到,在生產力循環下,四大趨勢電商消費、數位廣告、企業雲端、訂閱經濟將持續支撐科技產業發展,在近期科技巨頭的財報也可發現相同趨勢。
服務業:雖然近期全球因變種病毒,使確診數字再度攀升,但英國的例子已經證明,只要疫苗覆蓋率夠高,未來政府不見得需要透過封城以遏制疫情,目前英國在維持解封路徑不變的情況下,新增確診數已明顯降低。從股市表現也可看出,餐飲、運輸相關指數不受到疫情影響,近期持續優於大盤,另外經濟持復甦帶動就業回溫,就業訓練相關指數也有較佳的表現。
▍由強轉弱的產業:原油、旅遊
原油類股:過去受惠於減產與經濟復甦,WTI油價快速攀升至75美元以上,但在7月底的OPEC+會議後宣布將逐步增產後,原油相關類股已出現明顯轉弱的趨勢。
旅遊:雖然前述提到在疫苗覆蓋率高的情況下整體復甦不變,但由於全球各國疫苗施打狀況參差不齊,且目前多個國家疫情不論從新增確診或死亡來看,均尚未出現趨緩跡象,因此「航空」與「旅遊」相關類股在近期出現由強轉弱的趨勢。
▍由弱轉強的產業:醫療保健
醫療保健類股:在去年Q1出現明顯的漲幅後,往後走勢整體落後於大盤,但近期各國疫情再起,再加上未來疫苗有極高的機率將會需要施打第三劑,提高了相關類股對於對未來的營收展望,因此近期股價指數表現優於大盤。
▍維持弱勢的產業:博彩業、休閒娛樂相關
從去年到現在股票維持在弱勢的相關產業較為分歧,但整體還是可以看出,博彩業、休閒娛樂相關指數有較差表現。
🔗 8 月月報連結:https://pse.is/3kpzwc
----------------
【科技趨勢系列】科技巨頭 Q2 財報速讀,四個關鍵趨勢有改變嗎?
🔗:https://pse.is/3l97md
【總經Spotlight】OPEC+達成撤銷減產共識,2022年原油超額供給風險浮現?
🔗:https://pse.is/3mhaxt
同時也有3部Youtube影片,追蹤數超過103萬的網紅虹色侍にじいろざむらい,也在其Youtube影片中提到,こんばんは、バランです。今回は『宿命』のカバーだそうですよ。素敵ですよね。Official髭男dism。 『ノーダウト』とかコンフィデンスマンJPのドラマ主題歌だし、『Pretender』に至っては映画館で聴きましたよ。(コンフィデンスマンJP-ロマンス編-観てきた) 今回の『宿命』も、熱闘甲子園の...
第一象限 在 PopDaily 波波黛莉的異想世界 Facebook 的精選貼文
快伸出你的手手攤開來看,你是哪個象限的人格呢🖐
#邱比特編是第一象限
PopLove 波波邱比特
第一象限 在 PopLove 波波邱比特 Facebook 的最讚貼文
伸出你的手手攤開來,看看你是哪個象限的人格🖐
#邱比特編是第一象限
第一象限 在 虹色侍にじいろざむらい Youtube 的精選貼文
こんばんは、バランです。今回は『宿命』のカバーだそうですよ。素敵ですよね。Official髭男dism。
『ノーダウト』とかコンフィデンスマンJPのドラマ主題歌だし、『Pretender』に至っては映画館で聴きましたよ。(コンフィデンスマンJP-ロマンス編-観てきた)
今回の『宿命』も、熱闘甲子園のテーマソングだそうで。大活躍です。
ん?この概要欄がヒゲダンのステマじゃないかって?違います。
それこそ『食わぬ飯が髭につく』ってやつです。ええ。
不必要な仮定は物事を主張するうえでなるべくするべきじゃないって
哲学者のオッカムさんも言ってますよね。
いわゆる『オッカムのカミソリ』ってやつですね。知らない人はググってください。よし。
それにしても凄いネーミングですよね。『髭男』って。
ちなみに僕が見た限り、ヒゲダンは4人ともツルツルでした。マジかよ!
どうやら、『髭が似合う年齢になっても4人で楽しく音楽できるように』との思いが込められているそうで
そこは意外と普通なルーツなんですね。素敵です。
そういえば、ヒゲの漢字なんですけど
生えている場所によって表す漢字が違うって知ってました?
まずはこれ→『髭』。
まあ一番普通ですよね。この髭は『口の上の毛』を表すそうです。ふむ。
『髯』はほっぺたの周りのヒゲ、『鬢』は頭の左右側面の毛
『鬚』はあごの周りのヒゲだそうです。へぇー。
なんか最後の漢字だけめっちゃフサフサ感ありますね。
(座標系で言う第一象限と第三象限がフサフサに侵食されてる!)
古代日本人、髭にこだわりすぎ。
ちなみに『鬣』は動物のタテガミですって。
『鬆』に至っては『ダイコン・ゴボウなどの中心にできる細かいすきま。』
いや誰だよお前!
あ、そうそう。
話は変わるんですけど、わりとかわいい実験の話があるのでついでにしますね。
犬と猫のヒゲの違いの検証実験です。ほう。
とても犬猫が入れない細い隙間の先に、エサを置いておくんですって。
で、それを取りに行くか行かないかっていう実験です。
猫のヒゲって、神経と直接つながっているので、狭い隙間にヒゲが触れた瞬間に
『あ、この先にはカベがあって、私では中に入れないな』って思うから諦めるんですけど
犬のヒゲは神経とは独立してるので
ヒゲが触れてもお構いなしに突っ込んで頭を隙間にぶつけてしまうんだそうな。
へぇ~。
……あ!
犬も歩けば棒にあたる…
そういうことかーーー!!!
流石は先人の知恵。頭が下がりますね。
ところで、人間の髭に関しても様々な実験がされているんですけど
これだけ科学が発達した今でも、まだ分かっていないことがあるんですって。
それは何かって?教えましょう。
『なぜ人間のヒゲは時間によって伸びる速さが違うのか?』
ってことらしいです。
まあ、確かに違いますよね。朝はよく伸びる気がします。
こんな身近なことが分かっていないって、なんだか意外ですよね。
まあ、ヒゲがよく伸びるタイミングのメカニズムは不明ですけど
ヒゲダンが今大活躍してる理由はわかります。そう。謙虚に活動してらっしゃるからです。
それこそ”髭をなでる”ような態度ではなくってことですね。
…はい。
……あれ?
面白くなかったですか?
オチだったんだけどな。
あら、だめですか。
ん?
”einen Bart haben”?
うわ、急にドイツ語出てきた。
えーっと、ドイツ語で『髭がある』っていう意味ですね。
『ジョークのセンスが古くて、もう面白くない』という慣用句でもあります。
君は余計なお世話の天才かな?
懲りずに明日もまた来ます。さようなら。
(バランより)
▽原曲はこちら
https://www.youtube.com/watch?v=-kgOFJG881I
▼チャンネル登録よろしく▼
https://www.youtube.com/channel/UCNhplGFoeT_ylmw0MNP_LqA?sub_confirmation=1
■虹色侍SNS(フォローしてね)
虹色侍 公式Twitter
https://twitter.com/2416poprock
虹色侍 ロット
https://twitter.com/2416Roderick
虹色侍 ずま
https://twitter.com/ZUMA_2416
バラン
https://twitter.com/purechocolovely
LINE@(↓このURLをタップ)
http://line.naver.jp/ti/p/ZMQoQSPNK0#~
TikTok
https://t.tiktok.com/i18n/share/user/6633989649541169154/
Instagram
https://www.instagram.com/nijiirozamurai7/
▼お仕事の依頼先はこちら
https://www.uuum.co.jp/inquiry_promotion
※虹色侍宛、と記載お願い致します。
▼プレゼントやファンレターの送付先
〒106-6137
東京都港区六本木 6-10-1 六本木ヒルズ森タワー 37階
UUUM株式会社 虹色侍 宛
■監修・動画編集・概要欄 バラン
https://twitter.com/purechocolovely
第一象限 在 梁丸 Youtube 的最讚貼文
訂閱 ▶ http://bit.ly/2reFtOY
--
9.設T為坐標平面上的圓,
點(0,0)在T的外部且點(2,6)在T的內部。
請選出正確的選項。
(1)T的圓心不可能在第二象限
(2)T的圓心可能在第三象限且此時T的半徑必定大於10
(3)T的圓心可能在第一象限且此時T的半徑必定小於10
(4)T的圓心可能在x軸上且此時圓心的x坐標必定小於10
(5)T的圓心可能在第四象限且此時T的半徑必定大於10
第一象限 在 梁丸 Youtube 的精選貼文
訂閱 ▶ http://bit.ly/2reFtOY
--
3.設T為坐標平面上一雙曲線,且其通過第一象限的漸近線為L。
考慮動點(t,t^2) ,從時間t=0時出發。當t大於0時,請選出正確的選項。
(1) 此動點不會碰到T,也不會碰到L
(2) 此動點會碰到T,但不會碰到L
(3) 此動點會碰到T,但不會碰到L
(4) 此動點會先碰到T,再碰到L
(5) 此動點會先碰到T,再碰到L
第一象限 在 第一象限:象限,又稱象限角(英文 - 中文百科知識 的相關結果
第一象限 ... 象限,又稱象限角(英文:Quadrant意思是一圓之四分一等份),是直角坐標系(笛卡爾坐標系)中,主要套用於三角學和複數的阿根圖(複平面)中的坐標系。平面 ... ... <看更多>
第一象限 在 第一象限_百度百科 的相關結果
象限 ,又称象限角(英文:Quadrant意思是一圆之四分一等份),是直角坐标系(笛卡尔坐标系)中,主要应用于三角学和复数的阿根图(复平面)中的坐标系。 ... <看更多>
第一象限 在 象限角- 維基百科,自由的百科全書 的相關結果
三角學應用[編輯] · 第一象限的A 即是All (全部皆正)。 · 第二象限的S 即是Sine (只有正弦為正)。 · 第三象限的T 即是Tangent (只有正切為正)。 · 第四象限的C 即是 ... ... <看更多>