【處處極限不存在的函數】
.
我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個問題,那就是在設計了一個在某一點,例如說 a 點,極限不存在的函數以後,要如何改造這個函數,才有辦法讓 a 點「旁邊」的點其極限也不存在。
.
(接下來的內容,建議同學們可以拿支筆在紙上按照說明把函數畫出來)
.
舉例來說,如果我們設計了一個在 x = 0 這個點極限不存在的函數(例如設定這個函數在 x 小於 0 時其函數值均為 0;而當 x 大於 0 時其函數值均為 1),那麼要如何改造或調整這個函數,才有辦法讓這個函數在 x = 0 的「旁邊」的點其極限也不存在呢?針對這個例子而言,或許可以這樣做:先將這個函數在 x 大於 1 以後的函數值改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 1 的時候極限都不存在,但因為 1 並非 0「旁邊」的數字,所以顯然還要再調整,於是我們再將 x 大於 0.5 以後的函數值都改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 0.5 處其極限不存在,但同樣地,因為 0.5 並非 0「旁邊」的數字,所以我們繼續調整這個函數,下一步當然是將 x 大於 0.25 以後的函數值都改成 0.5,依此類推,再下一步就是將 x 大於 0.125 以後的函數值都改成 0.5,持續這樣的步驟,最終我們會得到一個當 x 小於 0 時其函數值為 0 而當 x 大於 0 其函數值為 0.5 的函數。這個函數當然仍然在 x = 0 的時候其極限不存在,但是原本在調整時的兩點極限不存在,卻因無限持續這樣的步驟,而變回了僅在 x = 0 極限不存在的狀態。這結果實在令人沮喪。
.
之所以會產生這樣的狀況,是因為持續了無限次將新增的極限不存在的點向 x = 0 處靠近的緣故。既然如此,那如果不要持續上面的步驟無限次呢?如果僅持續有限次的步驟,那麼在該次步驟的下一次,一定可以把 x = 0 右邊新增的極限不存在的點向 x = 0 再靠近一些,這個推論的結果就是,如果僅持續有限次上述的步驟,那麼就無法達成創造一個在 x = 0 的「旁邊」的極限不存在的點。結果,無論是有限次或無限次操作上述的步驟,最終都無法達成我們的目標。這真的真的非常令人沮喪,因為這意味著從一個點的極限不存在出發,去逐步改造出一個處處極限不存在的函數,方向很可能是錯誤的。
.
那麼,該怎麼辦呢?
.
面對這個問題,當時的我最終並沒有自己解出來,而是一個比過奧數的朋友在老師公布答案之前成功地解了出來,並告訴我他的想法。
.
他告訴我,既然從一個點的極限不存在開始是行不通的,那就一次就創造一大堆極限不存在的點吧!例如一開始的函數乾脆設定成這樣:當 x 介在 n 和 n + 1 之間且 n 為偶數時,將其函數值設定為 0,而其他地方則設定為 1。例如,當 x 介在 0 和 1 之間或介在 2 和 3 之間時,其函數值就是 0,而當 x 介在 1 和 2 之間或介在 99 和 100 之間時,其函數值就是 1。如此一來,我們就獲得了一個在每一個整數點其極限都不存在的函數。
.
以此為起點,比起我想的那個例子最初的樣子一次新增了無限多個極限不存在的點,似乎好像有了長遠的進步,但到此階段實際上並沒有解決我最一開始講的問題的癥結點,那就是如何在一個極限不存在的點的「旁邊」創造一個極限也不存在的點。
.
為了解決這個問題,我的朋友告訴我,下一步是在每一個「區間」裡進行調整。用例子來說明而剩下類推的話,大概是這樣操作:例如,在 0 和 1 之間,函數值原本都是 0,但接下來把這個區間切割成 10 等分,然後第 1、3、5、7、9 個區間(也就是在 x 介在 0 和 0.1、介在 0.2 和 0.3、介在 0.4 和 0.5、介在 0.6 和 0.7、介在 0.8 和 0.9 之間的這幾個區間),我們把函數值調整成 1,其餘的不動,那麼我們就可以得到一個,除了在所有整數點極限都不存在的函數以外,這個函數在 0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9 的極限也不存在。那如果是在原本函數值為 1 的區間,則在等分割成 10 個區間以後,將第 2、4、6、8、10 個區間的函數值調整成 0。若將上面這些動複製到其他區間的話,那麼在每一個整數區間(就是 n 到 n + 1 的區間)裡面,其十分位數的位置其極限都不存在。
.
接下來,再將函數值為 1 的區間等分割為 10 個區間,然後第 2、4、6、8、10 個區間其函數值都調整成 0,而函數值為 0 的區間一樣等分割為 10 個區間,但是是將第 1、3、5、7、9 個區間的函數值調整成 1,那麼,這個函數就變成了一個除了在所有整數點極限都不存在以外,但在每一個整數區間裡面其百分位數的位置極限都不存在的函數。
.
再接下來,繼續進行上面的動作,不斷地十等分分割之前產生的區間,並且適當地調整其函數值,使其在任一階段裡面都是前一個區間裡面的函數值是 0 且後一個區間裡面的函數值是 1 ,或前一個區間的函數值是 1 而後一個區間裡的函數值是 0 的狀態,持續無限次,最終就會得到一個在任一點其極限值都不存在的函數了。
.
要證明這個函數處處極限不存在有分簡單版和嚴格版,這邊我們先講簡單版,以後有機會再談嚴格版。對於這個函數而言,固定任何一點 a,其左極限只有兩種可能,0 或 1,但因為這個函數被分割地非常地密,而且連續幾個區間在任一階段裡面都是一下子 0 一下子 1 這樣變動,所以這個函數在 a 點的左極限不存在,因此這個函數在 a 點的極限並不存在。最後,因為 a 這個點是任意取的,所以我們可以說這個函數的極限值在任意點都不存在。
.
這個答案真的很猛,因為當時在班上只有我那位奧數的朋友給出了教授點頭的答案。
.
雖然當初他並沒有辦法清楚地講出左極限不存在的原因,也因為我們還沒學到極限的嚴格定義,所以沒辦法用嚴謹的敘述來證明這樣的函數確實處處極限不存在,但現在回想起來,那位奧數朋友還是很猛!因為他就好像那種天生的小說家一樣,信手拈來就寫出了一本傑出的小說,而我們凡人卻連寫一篇普通的文章都很成問題。
.
講到這裡,今天的故事似乎已經講完,但其實還沒,因為這樣聰明的人,並不會只出現我們班上甚至是這個時代而已。
.
關於「是否存在一個處處極限都不存在的函數」這個問題,其實在 19 世紀時,就有一位叫做 Dirichlet 的德國數學家,他所創造出來的一種函數(後來稱為 Dirichlet 函數),就是處處極限不存在的函數。這個函數的定義如下:當 x 為有理數時,其函數值是 1;當 x 不為有理數時,其函數值是 0。這樣的函數確實也處處極限不存在,也是我教授當時給同學們預設的答案。
.
在這邊我就不文字解釋為何 Dirichlet 函數處處極限不存在了,但我有拍一部影片來說明,如果你想繼續看下去,可以點開我貼在本篇文章留言處的這部影片,我有盡量簡單地解釋為何 Dirichlet 函數處處極限不存在。
.
雖然 Dirichlet 函數處處極限不存在,但其實當初 Dirichlet 所面對的問題,並非「是否存在處處極限不存在的函數」,而是「是否存在無法圖像化的函數」。在經過可能類似這篇文章最一開始的那些推敲以後,Dirichlet 創造了 Dirichlet 函數,而這個 Dirichlet 函數就是一個「客觀存在」但「無法圖像化」的函數。並且,除了無法圖像化以外,Dirichlet 函數在數學上也有著很重要的地位,因為他常常是一些直覺上無法察覺的現象的重要例子。例如我們直覺上都會認為只要函數有週期,那麼就會存在最小週期,但 Dirichlet 函數就是一個不具有最小週期的週期函數,因為任意有理數都是它的週期。
.
關於 Dirichlet 函數的性質我們就講到這邊,或許以後有機會可以專門寫一篇跟 Dirichlet 函數有關的文章,不過有很多性質都是需要具備更多數學知識以後才能介紹的,所以如果真的要寫的話,那可能就還要再等一陣子了。
.
最後,跟大家介紹一下我上面所提到的影片,那是我在 2020 年時所拍攝的一系列微積分教學影片的其中一集。該系列影片基本上有觀念講解、精選範例和補充教材,近期我會開始陸續上傳到這裡,但不是每一部影片都會寫文章來搭配,所以如果你想跟著我上傳的速度一部一部看,而且不漏掉系列裡每一部影片的話,可以關注我在西瓜視頻、騰訊視頻和優酷視頻的頻道;如果你想一次看完我全系列的影片的話,可以關注我在 YouTube、bilibili 或 Pornhub 上的頻道,上面已經上傳了張旭微積分全系列影片。另外這系列影片都有講義電子檔可以搭配使用,如果你想要取得該電子檔的話,請幫我按讚這篇文章和這個粉專、分享這篇文章,並幫我到我的臉書粉專評論處寫個評論,然後私訊我的臉書粉專,我的夥伴就會回覆你講義電子檔的連結。
.
感謝你的觀看,希望這篇文章對你有所幫助,有任何問題或想法也歡迎在下面留言告訴我。另外,本文章同步發佈於數學老師張旭的 YouTube 頻道社群、微博、今日頭條、Medium 和 HackMD,若你也有上面提到的那些帳號,歡迎按讚、分享和關注!
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
第 6 十分位數 在 Z9 的看板 Facebook 的最佳貼文
108年全體受雇員工十分位數:
D1:第1十分位數 29.1 萬元
D2:第2十分位數 34.0 萬元
D3:第3十分位數 38.6 萬元
D4:第4十分位數 44.1 萬元
D5:第5十分位數(中位數) 49.8 萬元
D6:第6十分位數 56.7 萬元
D7:第7十分位數 67.4 萬元
D8:第8十分位數 83.8 萬元
D9:第9十分位數 117.9 萬元
第 6 十分位數 在 無限期支持黃國昌老師 Facebook 的最讚貼文
【影片】
2017.03.30 立法院第9屆第3會期財政委員會第10次全體委員會議
質詢內容:薪資結構與十分位數統計、特別預算舉債
質詢委員:黃國昌
列席受詢:主計長朱澤民
發言時間:09:52:31 - 10:04:47
🎯由薪資十分位數可看出,每升1個十分位數,越高薪金額差距越大。
🎯比較2009年~2016年,第1十分位數與第9十分位數間的差距,差距逐年增加。
🎯政府應著眼於低分位數薪資的提升,而非平均薪資的拉高。
🎯主計總處未來應更細緻的公布加班費獎金紅利等佔薪資比例資訊。
🎯以特別預算刺激經濟,過去都沒達到效果,但讓國債攀升。請主計長好好監督。
🎯主計長表示,債務在8年內平均絕對不會超過15%,而且努力控制個別年度不超過15%。
上個會期時老師曾要求主計總處將薪資按照20等分位分配公佈。
雖然主計處只能公佈10等分位,對主計總處3/29公佈薪資10等分位表示肯定。
👉老師指出,按照主計總處公佈2016年薪資10等分位數,
如果以總薪資來看可以很清楚的看出,有50%以下的人領4萬元以下薪水。
如果以經常性薪資來看的話,有70%以下的人領4萬元以下薪水。
這個是第一個可以看到很清楚的特徵
這個是在公佈平均-目前平均薪資大約51000多元,所看不到的。
👉第二個,每攀升1個10分位數,金額差距就越來越大。
舉例來說,第9分位數跟第8分位數差距將近新台幣2萬元,第8分位數跟第7分位數馬上下降到9200元,第7分位數跟第6分位數馬上下降到5900元,第6分位數跟第5分位數馬上下降到4600元。
所反應出來的是有相當多比例的人集中在低薪這一塊。
在整個分佈上,越高薪差距會拉得越大。
因此,如果比較2009年~2016年,第1十分位數與第9十分位數間的差距,差距逐年增加。
主計長解釋,兩者最主要的差距出自在年終獎金。
👉老師反駁,不論以實質性薪資或經常性薪資來看,差距在整體呈現一樣的模式,結論都一樣。
👉老師說明,之所以拜託主計總處要將數字公佈,為了讓我們的政府政策在擬定的時候,不是只著眼於平均薪資的拉高。
因為只有平均薪資拉高的時候,可能只有在high end 這一邊越來越高。
如果要促進整體的薪資都能夠上升的話,50%甚至60%分位數下面,一來偏低二來成長很慢,這部分才是政府應該努力著重的方向。
這也直接的牽涉到主計長所說,年終獎金的佔比。
所以上次質詢時,曾把英國的date給主計長看,希望未來主計處在公佈的資料時候,就實質性薪資與經常性薪資中,加班費、紅利、各種獎金的部分,比例各佔多少能夠做清楚的公佈。
幾天前主計處公佈一月平均薪資,到了9萬3千元,大概是歷年來一月最高的。
所以很多人跳出來懸賞,到底有哪些人領到這樣的薪資。
當然薪資其中有很大幅度的部分是年終獎金。
老師詢問主計長,增加的53465元的部分,有多少%是年終獎金?
主計長回覆,目前沒有資料,但事後可以提供給委員。
老師表示不用提供給委員個人,不僅是立法委員,只要國民願意有心研究的人都應有的資訊。
上次主計長曾經承諾公佈較細緻的資料,請主計長告知何時公佈?
👉主計長說明,今天主計處公佈了一個薪情平台,每一個人輸入自己的情況就可知道與其他人的比較。
至於委員前次所提獎金紅利的細目,必須用大數據來分析,因為即使是財稅資料,也是夯不啷噹通通在一起叫做薪資,有加班費但獎金紅利並未細分。
老師詢問,主計總處未來在做統計時,能否做的更細緻一點?
主計長表示下個月可以發佈年終獎金的情況,加班費現在已經有做統計調查。
老師詢問,所以加班費的統計調查所佔比例是多少已經有做出來嗎?
主計長答覆應該有只是手邊沒有。
老師表示會後再跟主計總處的同仁請教。
老師接下來質詢前瞻基礎計畫。
👉老師提醒主計長,每次只要有新政府上台,透過特別預算,希望能夠短期的刺激經濟帶動經濟的發展。
過去都可以看到相同的軌跡。
馬政府4年用了5000億的預算但實際的效果是否有達到事後都可檢證。
當然現在不是在批評前朝的政府,這已經沒有意義。而是以過去發生的事情為基礎,讓我們能夠有智慧的思考未來。不要每次都採用相同的策略,不斷落入錯誤的循環當中。
👉老師說明,我們的國債從2008年的時候是3兆7782億,2016年已經到了5兆5372億。
在這當中每年預算的赤字,當然在佔國債中重要部分。
👉老師提出國庫過去9年舉債狀況的圖表說明,2009年跟2010年舉債都非常高,將近5000億卻無違反公共債務法的規定。
因為者兩年債務均未列入公共債務法債限15%計算基準當中,不用列入是因為它們都是用特別預算編列的。
👉2014年有位學者說,當初規定特別預算是為了要使預算有彈性,只是過多的彈性反而讓預算產生了大洞。
老師詢問主計長是否知道這位學者是誰?
就是主計長本人。
2014年時主計長出席「立法院預算審查制度崩壞,論預算審查問題」座談會的時候,大家已經開始在檢討4年5000億實際上發生效益,以及所造成財政紀律崩壞的負面效果。
老師表示對那時主計長說的這段話心有戚戚焉。
因此期待主計長在面對前瞻基礎建設特別預算的時候,能夠本於面對國家財政紀律以及實際效益的角度,來把這件事情做好。
過去經驗累積下來產業沒有升級、經濟沒有成長、薪資沒有增加,留下來的是不斷增加的國債,給後代子孫的負擔。
希望主計長在行政部門內部,幫忙客觀評估效應,遵守財政紀律,嚴格監督執行,確實追蹤,還要核實獎懲。
👉主計長特別說明,15%的限制特別把它做一個彈性,在8年內平均絕對不會超過15%,而且努力控制個別年度不超過15%。
影片連結:
https://youtu.be/EpkEmeq11b8
立法院IVOD:
http://ivod.ly.gov.tw/Play/VOD/97051/1M
相關質詢:
🔖2017.03.06 質詢薪資結構&非經常性薪資佔薪資比
goo.gl/ziFVhG