#Q博展知識
在德國科學家倫琴發現X射線以前,醫生診斷病患體內的情況在手術前都只能依據觸診或是病患自己的描述,這樣的診斷方法常會造成誤診,以致拖延治療進度
現代醫學造影技術的發展,使病患經過掃描後就能夠很清楚的知道體內發生的問題,協助醫生更了解病患的狀況。
就讓Q博來簡單的介紹醫學影像技術吧!
【3D影像醫學及手術】
1970年代發展的電腦斷層(Computed Tomography,簡稱CT)及磁振造影(MRI),經過數代的進階,時至今日的21世紀,不僅速度飛快、解析度高清、更進入從二維(2D)重建三維(3D)接近人體解剖的虛擬實境(Virtual Reality簡稱VR)的軟體發展。 VR虛擬實境已經運用在遊戲、媒體、室內設計、建築等各行各業,透過這樣技術將是未來融合虛實世界的重要設備,同樣運用於外科手術,三維(3D)的VR更可以做治療前計畫、教學及微創手術前的模擬操作。
所謂的AR擴增實境(Augmented Reality)的定義就是將3D重建的VR與實際的即時影像重疊結合,讓醫師在手術時更清楚病灶及周圍器官的相關性,特別是血管,使手術避免出血,視野更清楚。 目前至少已經有三個器官突破挑戰AR,即是眼睛、手與腦部(Augmented Eye, Hands and Brain),這個確定性的進步不僅是醫療科技的創新更是人民的福祉。
https://scitechvista.nat.gov.tw/UrlMap?t=fG8
【核子醫學科技】
大自然中有氮、氫、氧、碳……等多種元素,這些元素分別有不同的原子序數與質量數。凡原子序數相同、質量數不同的元素都稱為同位素,各同位素的化學性質仍相同,只是物理性質不一樣。例如:氫有三個同位素,氫一叫氫,氫二叫氘,氫三叫氚,原子序都是1,但其質量數,氫是1,氘是2,氚是3,質量數的不同,使物理性質也不同。若從物理上觀察:氫的個性穩定,不會釋出放射線,稱為氫的「穩定同位素」;氚的個性不穩定,會釋出β負粒子放射線,稱為氫的「放射性同位素」。
當我們需要放射線的時候,可以先製造一個不穩定的放射性同位素,由於它會釋出不同能量的粒子與放射線,也因此,放射性同位素成為人造放射線的主要來源之一。
核醫科技結合放射性同位素藥物及放射線示蹤性,協助醫生診斷或追蹤病情;利用X光的穿透性,讓體內器官組織病變在底片上顯示;紫外光與物質作用時具有殺菌力;醫院為癌症病患做放射線治療,即是一種透過鈷-60加瑪(γ)射線或電子加速器產生X射線殺死癌細胞的治療方法。
https://scitechvista.nat.gov.tw/UrlMap?t=h5C
【磁振造影】
要說明磁振造影的原理,必須先解釋什麼是「核磁共振」。可以想像一個原子的結構,是在中心有一個很小的原子核,週圍有電子。不同的元素,它的原子核裡,會有不一樣數目的質子與中子,質子與中子數量的總和,稱為「質量數」。一個原子,只要原子核的質量數是奇數,比如是1, 3, 5, 7……的時候,當原子在強力磁場的作用下,原子核外圍電子的「磁矩」的「總向量和」,就會順著磁場方向來排列。這個時候,如果向原子照射適當的電磁波,原子核就會吸收其中的特定波長或能量的電磁波,被激發到比較高的能階,這個過程稱為「核磁共振」。
原子核會自然從高的能階掉回低的能階,此時它會放出電磁波,於是就產生了核磁共振的信號,也就是用來做磁振造影的信號。我們可以用儀器偵測這些信號。比方說,生物體內含有許多水,水分子是由氫原子和氧原子組成的,氫原子的質量數是1,我們就可以使用核磁共振的設備,讓它產生信號,並且偵測。醫學界發現,利用這個方法,不必動手術接觸人體,就可以獲取體內水分子分布的資訊,從而精確繪製人體內部的結構,這就叫做磁振造影。
https://scitechvista.nat.gov.tw/UrlMap?t=i8w
粒子加速器速度 在 Facebook 的最佳貼文
【號外】恒星被黑洞吞噬產生的幽靈粒子/江國興教授(台灣國立清華大學天文研究所特聘教授)
//天文學家利用在南極的探測器及一系列在地面及太空的望遠鏡首次在一顆被黑洞撕裂的恆星捕獲微中子。這是天文學家史上第二次偵測到來自銀河系以外的微中子,由德國電子同步加速器研究中心 (DESY) 的博士生 Robert Stein 領導的國際團隊於 2021 年 2 月 22 日在頂尖學術期刊《自然天文學》發表這個重要成果。
微中子是基本粒子,數量遠遠超過宇宙中的所有原子,每秒就有數以兆計的微中子通過我們的身體,但它們很少與其他物質發生相互作用,所以不容易被偵測到,被喻為幽靈粒子。高能微中子的能量比地球上最強大的粒子對撞器產生的能量高 1,000 倍,因此天文物理學家對高能微中子特別感興趣。他們認為宇宙中最極端的事件,例如劇烈的星體爆發,會使粒子加速到接近光速的速度。這些粒子然後與光或其他粒子碰撞以生成高能微中子。2018 年,天文學家首次發現在一個耀變星體 (Blazar) 所產生的高能微中子。
當不幸的恆星離星系中心的黑洞太近時,重力產生強烈的潮汐,會將恆星扯裂,這種罕見的災難性事件被稱為潮汐破壞事件 (Tidal disruption event) 。在吞噬過程中,有大約一半的恆星碎片會透過吸積盤旋入黑洞裡,一道耀眼的光芒將整個星系照亮。在某些情況下,黑洞會發射快速移動的粒子流。科學家認為潮汐破壞事件會在這種粒子噴流中產生高能微中子,他們還期望這些事件將在其演化的早期在極亮時產生微中子。
這次潮汐破壞事件所產生的強光於 2019 年 4 月 9 日由「史維基瞬變設備」 (Zwicky Transient Facility, ZTF) 發現, ZTF 是位於加州理工學院的帕洛馬山天文台的 1.3 米口徑自動望遠鏡,國立清華大學和國立中央大學是創始成員之一。ZTF 擁有一台超廣角的相機,可以在三晚的時間內掃描整個天空並進行自動檢查,從而發現更多瞬變天體。這個稱為 AT2019dsg 的潮汐破壞事件發生在距地球7億光年遠的一個名為 2MASX J20570298 + 1412165 的星系中,該星系位於海豚星座,星系中央有一個超大質量黑洞,質量為太陽的 3 千萬倍。由於潮汐破壞事件為罕見天文現象,全球多個天文台攜手合作進行後續多波段(伽瑪射線、X 光、紫外線、可見光和電波)觀測與研究。
AT2019dsg 的極亮時刻在 5 月出現,但天文學家沒有看到清晰的噴流,這起事件看起來不像是微中子的候選者。然而,在半年後的 10 月 1 日,美國國家科學基金會位於南極洲的阿蒙森 - 斯科特南極觀測站的冰立方微中子天文台 (IceCube Neutrino Observatory) 捕獲到一顆名為 IC191001A 的高能微中子,並沿其軌跡回溯到了天空中的位置。大約七個小時後,ZTF透過交叉分析確認在四月發現的 AT2019dsg 也在相同的天區。經分析後, Robert Stein 和他的團隊認為這次潮汐破壞事件與捕獲的微中子僅是巧合的機會只有 500 分之一。透過後續的多波段聯合觀測,促使天文物理學家重新思考潮汐破壞事件如何產生高能微中子。
Robert Stein表示:「這是與潮汐破壞事件相關的第一顆微中子,潮汐破壞事件尚有許多未解的謎團,而微中子顯示在吸積盤中心有一個強大的引擎,射出高速的粒子。結合電波、可見光、紫外線和X光望遠鏡的觀測數據,我們確認潮汐破壞事件能充當巨大的粒子加速器。」
AT2019dsg 是為數不多的已知有 X 光輻射的潮汐破壞事件之一。科學家認為X光可能來自黑洞附近、吸積盤內部,或高速粒子噴流。研究團隊成員之一,國立清華大學天文研究所特聘教授江國興參與這次潮汐破壞事件的 X 光數據分析。江教授表示:「 AT2019dsg 的 X 光以前所未有的速度衰減,因研究小組沒有看到強大的噴流,這暗示吸積盤以高速冷卻,或X光被逐漸增加的外圍氣體迅速吸收。」
論文的第二作者荷蘭萊頓大學助理教授 Sjoert van Velzen 說:「當我們發現 ZTF 所找到的第二明亮潮汐破壞事件是高能微中子的來源,我們非常激動。」
江教授說明:「雖然微中子像幽靈,但由於微中子幾乎不與任何物質有相互作用,所以每一顆來自宇宙深處的微中子都帶著其宿主星體的重要信息。只要搭配其他電磁波或重力波的觀測,我們可以更全面了解產生高能微中子的物理機制及追溯其來源。」
ZTF計畫約一半經費由美國國家科學基金會提供,另一半則由加州理工學院領導的國際合作團隊所分擔,中央大學及清華大學透過科技部補助組成的「探高」團隊是國際合作成員之一。
當超大質量的黑洞將恆星撕裂之後,大約一半的恆星碎片被拋到太空,而其餘的則在黑洞周圍形成發光的吸積盤。 該系統在不同波段發出明亮的光芒,並可能產生垂直於吸積盤的高能噴流狀向外物質流。吸積盤附近的中央強大引擎同時射出高能微中子。
原文刊於
http://www.astr.nthu.edu.tw/p/404-1336-198097.php?Lang=zh-tw
//
粒子加速器速度 在 國家地理雜誌 Facebook 的最佳貼文
這是第一種獲得科學描述的恐龍!!??
1850年代,藝術家以現代的鱷魚為範本,為倫敦的水晶宮公園將約1億6600萬年前的斑龍做成雕塑。
這個雕塑群很容易被輕蔑地視為過時甚至是B級電影裡的道具,不過水晶宮恐龍的真正意義:那是當時最新的科學知識,藉由比對現生動物和研究人員手中少數的化石所獲得。
在過去幾年中,科學家每年平均發掘大約50種新恐龍,這樣的速度是數十年前難以想像的。醫學掃描儀、粒子加速器和化學分析法,讓研究人員能將骨頭與岩石虛擬分離,看見化石最細微的隱密特徵。從恐龍蛋和羽毛的顏色到腦部形狀,如今的恐龍大全包含了許多過去未知的細節,包括這些動物如何出生、成長與生活。
國家地理2020年10月號【顛覆恐龍世界!】—讓你重新認識恐龍!!
最新上架,各大書店及這裡買得到👉
📣博客來:https://bit.ly/3n34eqd
📣誠品:https://bit.ly/33hfnfa
📣讀冊生活:https://bit.ly/30lCDHd
📣金石堂網路書店:https://bit.ly/3l0f7Yd
📣國家地理PChome店:https://bit.ly/36jy5Fd
📣蝦皮大石商城:https://bit.ly/345ZkAg
📣【7週年慶★嗨起來】全年最優惠訂閱倒數中 :https://bit.ly/39CJZJN