非接觸式感測器創建新生活方式
新日本無線(New Japan Radio)的非接觸式光電感測器NJL5830R融合了3種技術:光電半導體技術、模擬技術和封裝技術。
封裝内的發光元件和受光元件各自搭載了控制IC。NJL5830R反射式光電感測器最適合將公共設施上的按鈕開關改造為非接觸形式,非接觸的實現可以防止細菌感染。本產品是將高亮度的紅外線LED和受光IC整合於自創封裝之内,最合適裝有排列多個按鈕的設備和屋外裝置。
1- With Covid-19:此光電感測器實現了非接觸式隔空手勢操作,為改善衛生環境和保障東京奧運會的安全做出了貢獻。
2- 安裝在現有按鈕中:可以保持現有按鈕的接綫方式繼續使用,不需要專門處理(因爲它是光學式感測器、所以需要設置透光窗口)。
3- 防止鄰近按鈕之間的干擾和誤動作:檢測距離的最佳化使之更加容易安裝在鄰接按鈕上,最適合電梯和售票機等裝有多個按鈕的操作裝置。
#Covid19 #全民防疫 #東京奧運
http://www.tw.njr.com/optical_technology/index.html
「紅外線動作感測器」的推薦目錄:
- 關於紅外線動作感測器 在 EE Times Taiwan Facebook 的精選貼文
- 關於紅外線動作感測器 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於紅外線動作感測器 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
- 關於紅外線動作感測器 在 紅外線動作感測器(PIR Motion Sensor) | 傳產工業4.0化協作 ... 的評價
- 關於紅外線動作感測器 在 arduino紅外線感測器介紹2023-精選在臉書/Facebook/Dcard上 ... 的評價
- 關於紅外線動作感測器 在 arduino紅外線感測器介紹2023-精選在臉書/Facebook/Dcard上 ... 的評價
- 關於紅外線動作感測器 在 麥克風模組、霍爾開關、紅外線感測器 - YouTube 的評價
- 關於紅外線動作感測器 在 紅外線動作感測器原理的推薦與評價,GITHUB 的評價
- 關於紅外線動作感測器 在 人體紅外線感測器應用-1.進場人數管制系統 - Facebook 的評價
紅外線動作感測器 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
紅外線動作感測器 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
無人零售的未來,究竟是機器視覺,還是RFID?
2020年8月10日 星期一
來源:科钛网 作者:CoreTech
重返實體 無人商店興起
無人工廠、無人倉儲、無人機、無人駕駛……科技帶給人們的是勞動力的解放,給各行各業帶來的,則是格局的重構。而對普通消費者來講,零售模式的轉換是切身感受到的。
自2016年底亞馬遜的 Amazon Go 亮相以來,中國國內無人零售領域的投資迅速升溫,無人零售被資本市場,視為繼共享單車之後的又一投資風口。傳統實體零售、電子商務、再到現在「智慧零售」概念的提出,零售融合科技產生的化學反應,讓其超過了任何行業迭代的速度。
相較於傳統零售行業的房租、人工、物流壓力,無人零售旨在減輕這些痛點:透過減少前端人力削減人工成本,以較小的店鋪面積及靈活的選址,降低房租成本,同時借助物聯網和大數據降低物流成本。
電商們的流量大戰,從線上打到了線下,線上流量紅利時代逝去,已是行業共識,互聯網巨頭紛紛佈局線下零售,挖掘線下消費的大數據價值,試圖透過打造新場景,帶來新流量、新體驗和新供應鏈,無人零售數位化時代已然開啓。
科技推動發展。無可厚非,技術問題是無人零售普及的命門,視覺技術、物聯網技術與行動支付,則是其中的關鍵技術架構。當下, RFID 標籤技術及機器視覺行動偵測技術,是行業內比較推崇的兩種方式。
RFID:辨識技術鼻祖嗅到了智慧零售
簡單說,一個RFID晶片就像U盤一樣,可以存入特定數據,併發出無線射頻信號。接收機可以在一定距離內捕捉到信號。
在無人零售領域,RFID有著很大的發揮空間。無人便利店代表商家繽果盒子的CEO陳子林表示:「最初打造產品的時候,我們發現在無人商店裡使用RFID解決方案,是最可行、最有效率的。繽果盒子目前在全中國落地158家店,進駐22個城市。我們團隊利用RFID的商品辨識的優勢進行研發,RFID不僅僅是幫助認出這個商品而已,其實整套結算管理才是重頭戲。在研發最初,無人零售這行業是新物種,沒有可借鑒的,都要摸索。無人零售大戰一觸即發,我們越早推出越好。所以,選擇先用RFID技術把繽果盒子做出來,再去透過實戰,來去打磨後端支撐體系。」
匯美集團CMO肖海坤也表示,RFID在服裝的在智慧零售方面,還開發出更大的用處。
「我們可以透過攝影機捕捉到RFID晶片,能夠收集到顧客拿起過這件服裝的次數,每家門市店服裝銷售情況。這樣就知道了顧客的偏好,我們會根據這些數據改變服裝款式、顏色,最大程度滿足顧客需要。另外,如果門市店庫存減少,後台會自動顯示,我們可以第一時間智慧補貨,全程智慧化管理,工作人員很少參與。」
據不完全統計,目前市場上採用 RFID 標籤技術的各種無人店已超過 20 家。但在發展壯大的同時,RFID也出現了技術上的一些壁壘。比如:
1、成本。有質疑聲音認為,使用RFID技術雖然減少了線下人力成本,但後期營運和維護成本很高,且標籤成本抑制了低價商品的毛利。
2、漏讀。漏讀是目前行業內,正在重點解決的問題之一,即使只有單件商品放置在結算區,設備也無法讀取商品資訊,晶片與天線之間沒有發生接觸。「RFID標籤的辨識距離,跟它的功率大小、靈敏度和天線大小有關,原因非常複雜。如果辨識距離太小,就容易發生誤讀,但辨識距離太短,又容易發生漏讀」。有專家解釋道。
3、速度。結算完畢後,顧客需要帶著已買單的商品,經過一個感應區,感應區會自動辨識是否有未支付的商品。如果沒有,系統就會提示顧客推門離開,整個過程耗時約5秒。而隨著顧客購買的商品數增加,即使系統能夠準確辨識,耗時也將進一步增加,嚴重影響用戶體驗。
4、止損。採用RFID方案的無人便利店,面臨的止損挑戰主要來源於兩方面:一是顧客惡意損毀RFID標籤;二是顧客刻意遮蔽標籤的信號,比如用手或錫箔紙遮擋標籤。
目前,一些企業意識到了缺乏 " 護城河 " 的風險,對外宣稱正在跟進機器視覺技術。那麼,機器視覺技術又是什麼?
新技術「攪局」 機器視覺要幹掉RFID?
機器視覺是指利用攝影機、手機 GPS 或手機 WiFi 等,辨識動作、商品和人,以及進行定位與關聯。行移動偵測則是透過攝影機,採集圖像進行算法計算,當鏡頭畫面發生變動,如有人走過、鏡頭被移動時,算法計算會啓動,而計算結果一旦超過閾值,便會觸發指示系統做出報警處理,移動偵測常用於無人值守監控錄影和自動報警。亞馬遜無人超市——Amazon Go所採用的便是機器視覺辨識技術。
使用機器視覺辨識技術的零售方式,流程簡單、無需結賬、即買即走。消費者進入Amazon Go購物前,需要一個亞馬遜帳號,並下載app。在入口處會對顧客進行人臉辨識,確認用戶身份。
當消費者在貨架前停留,並選擇商品時,攝影機會透過圖像、手勢辨識,判斷顧客是否將貨物置於購物籃(購買),還是只是看看然後放回原處(未購買)。
透過貨架上的紅外線感測器、壓力感應裝置(確認哪些商品被取走),及荷載感測器(用於記錄哪些商品被放回原處),掃描並記錄下消費者購買的商品,即時傳輸至 Amazon Go 的資訊中樞,然後自動在顧客亞馬遜賬戶上結算,用戶購物完成,直接離店。
智慧無人便利店「簡24」創始人兼 CEO 林捷談到未來,堅定的看好視覺辨識。「為什麼還有爭議,主要是智慧視覺辨識太難做,RFID技術成熟,很容易做好。」
林捷推出的無人便利店「簡24」,首家門市店以於 2018 年 10月 25 日在中國上海落地。據他介紹,簡 24 採取 Amazon Go 的方式,全智慧視覺辨識技術:用戶購物流程,就很像此前Amazon Go在宣傳片裡顯示的那樣:用戶掃碼打開閘機門,然後進店選購商品,選完商品後直接拿貨走人。
然而,由於智慧零售的技術複雜,在現實中尚沒有大規模出現。因此,基於物聯網、互聯網和智慧化,三種結合應用的則是大多數。
例如:京東 X 無人超市的貨架上,每一件商品都被貼上 RFID 標籤。同時,超市融合 RFID、人臉慧、智慧視覺辨識等多種技術,用戶在店內的所有行為、甚至在哪個貨架邊停留了幾秒,都可以被感知和分析。選好商品,消費者只需要通過結算通道,走出超市即可,全程不用進行任何操作。
據一位瞭解京東 X 超市項目的第三方人透露,京東研發出智慧視覺辨識系統,但根據不同場景選擇不同策略,便利店使用視覺辨識系統,但是在超市上還是採取 RFID 和人臉辨識等「相對折中」的技術。「京東就是給商家自由選擇權,當然,搭配不同的解決方案,成本結構也不同。」業內人士感嘆道。
無人零售未來發展趨勢
深蘭科技創始人陳海波曾表示,無人零售場景中「商品一定要能夠被遠距離非接觸辨識,機器視覺才是正確方向」。
但在萬端看來,雖然 RFID 單一技術並不能解決無人零售場景中的所有問題,但它仍有存在必要,而且擁有許多機器視覺,並不具備的優勢,比如即時監測庫存和商品的熱力分布。
萬端指出,未來商業的一大趨勢,就是數據的即時化和智慧化。RFID 即時、精準獲取海量數據的能力,如果能夠結合高效的數據分析系統,就可以為 C、B 端的協同,和供應鏈優化提供有力的數據支撐。
多技術融合
目前看來,多技術融合是未來無人零售解決方案的發展趨勢。
海外無人零售項目 QueueHop,無疑是 RFID 在無人零售場景中,結合其他技術的一個絕佳範例。QueueHop 的購物方式主要透過一個具有 RFID 功能的讀取器,和帶有商品二維碼的安全扣,以及具備自主結賬功能的系統來實現。
具體來說,它的運作方式是這樣的:首先,顧客把想要買的商品,放到專用的讀取器上,讀取器會辨識這些物品,並將價格和稅款顯示出來;然後,系統會詢問顧客是否想要紙質的小票,或者直接 email 給 TA;在顧客付款之後,還要把安全扣放入一個小槽裡面來解鎖。如果這是一個已經買過的商品,安全扣則自動被解鎖。
QueueHop 目前已經贏得了多家零售商客戶,包括 Rebecca Minkoff、Jor' jet Boutique ,以及其他一些著名的快時尚大眾品牌。
貼合應用場景
技術的發展,必須牢牢貼合實際應用場景。無人便利店是一種全新的零售業態,此前 RFID 廠商並未有針對性地,為這一場景設計產品。未來累積了一定經驗之後,應用 RFID 方案的無人便利店,有望得到進一步優化。
另外,在某些特殊場景中,RFID 技術也能揚長避短,充分發揮其價值。比如應用於很多食堂的 RFID 自助結算餐台。RFID 自助結算餐台,配備了多種色彩的餐具,每一種色彩對應一個價格,碗碟內置 RFID 標籤供餐台讀取價格資訊進行結算,一小時可以完成上千人次的自助結算,僅需一名操作員,站在設備後維持結算秩序即可,大大提高了結算效率。
路在何方
無人零售對整個行業來說,都是一個全新的命題,不管傳統企業,還是初創公司,都還處於探索階,還在不斷嘗試和驗證各種技術的可行性。
繽果盒子和 QueueHop 雖然以 RFID 起家,但也在積極探索機器視覺方案。目前,零售行業正處在一個百花齊放、百家爭鳴的時代。而這些不同觀點的交叉和碰撞,正是行業創新和發展的源泉。
資料來源:https://3smarket-info.blogspot.com/2020/08/rfid.html?m=1&fbclid=IwAR2BAg1fJ1BM08vEYQXphUi7hY2AquMChZCSKqC4-7CRw2r0ocZmgb4cteA
紅外線動作感測器 在 arduino紅外線感測器介紹2023-精選在臉書/Facebook/Dcard上 ... 的推薦與評價
使用人體動作感應器被動式紅外線感應器( Passive Infrared Sensor , PIR )也經常被稱為PIR 動作感應器( PIR Motion Sensor ) ,是一種可偵測紅外線的感 ... ... <看更多>
紅外線動作感測器 在 arduino紅外線感測器介紹2023-精選在臉書/Facebook/Dcard上 ... 的推薦與評價
使用人體動作感應器被動式紅外線感應器( Passive Infrared Sensor , PIR )也經常被稱為PIR 動作感應器( PIR Motion Sensor ) ,是一種可偵測紅外線的感 ... ... <看更多>
紅外線動作感測器 在 紅外線動作感測器(PIR Motion Sensor) | 傳產工業4.0化協作 ... 的推薦與評價
◎紅外線動作感測器一般用在防盜系統上,例如有人入侵屋內便響警報的紅外警報器,或是自動照明裝置,例如玄關、走廊、樓梯間或車庫門口不常有人走動,將紅外線感應器和燈具 ... ... <看更多>