打開電力新視野 - 日月潭抽蓄發電成典範 光輝歷史 風華再續(06/01/2020 台電月刊690期)
讓我們避免無謂的口水戰、意識形態先入為主,報真導正,回歸客觀、持平、專業的角度來看待能源轉型的各面向議題。
文後還有一系列相關的議題探討、解析,也頗值得大家參考。
台電月刊第690期封面故事專題企劃 - 日月潭抽蓄發電成典範 光輝歷史 風華再續
日月潭擁有全臺唯二的抽蓄水力電廠,在迎向能源轉型的今日,抽蓄機組肩負尖峰急救電力、確保供電穩定的重任,更許諾日月潭的永續經營。
來到日月潭,總讓人放慢腳步,欣賞一年四季、晨昏變幻的美,加上環湖步道與休憩設施完善,每年吸引超過600萬人次造訪,2019年更獲選全球百大綠色旅遊目的地。
然而,一般人可能不知道,日月潭不僅具有觀光休憩功能,還是提供發電的大型水庫。日月潭每日水位有將近2公尺的水位落差,這不是潮汐現象,而是台電大觀二廠、明潭發電廠每日進行抽蓄發電造成,順此變化,遊艇停靠區的碼頭設計多採用浮排;日月潭能保持清澈、避免優氧化,原因之一是抽蓄發電使潭水經常在上池(日月潭)及下池(明湖水庫、明潭水庫)間流動所致;當地餐廳供應的鮮美潭魚,則來自台電每年放養魚苗、嘉惠漁民;身為日月潭水庫管理機構,台電還肩負著水庫清淤與集水區邊坡維護工作,讓美景長青。
水力發電原鄉 再續光輝歷史
早在日治時期的1930年代,臺灣電力株式會社(台電前身)奠立了日月潭複雜的水力發電系統,興築水社壩與頭社壩形成日月潭人工湖,潭水來自濁水溪上游,在南投縣仁愛鄉武界地區築壩攔水,經15公里長的引水隧道,引水注入日月潭,形成「離槽水庫」(即不建在溪流本流上的水庫,與「在槽水庫」相對),同時利用水位落差引水至兩座發電所(即今大觀一廠與鉅工分廠)進行發電,發完電的水再度回歸濁水溪,流經下游集集攔河堰以供應彰、雲地區的農、工、民生用水。
1970年代「第一次世界能源危機」之後,世界各國紛紛投入開發抽蓄水力發電,加上1970年代末,臺灣經濟快速成長,尖峰用電需求急遽增加,政府乃提出抽蓄發電計畫,大觀二廠、明潭發電廠先後於1985年及1995年落成啟用,明潭發電廠完工時是當時亞洲第1大、世界第4大抽蓄電廠。兩廠分別可輸出最高100萬瓩及160萬瓩電量,占今日全臺總裝置容量約6.2%,至今仍是臺灣僅有的兩座抽蓄電廠。
如果以球隊成員來比喻不同類型的電廠在電力系統裡的角色,抽蓄電廠就像一位可靠而敏捷的「備援投手」。發電處李崇賓處長指出,這是因為抽蓄機組有「起動迅速、升降載速度快、線上調度及離峰抽蓄儲能」4項特點,遇到系統負載尖離峰變化過於劇烈,或是發生大型機組跳脫導致系統頻率下降,它都能在短短數分鐘內立刻上場救援。同時,抽蓄水力發電原始設計理念是利用離峰時段剩餘電力抽水,在白天尖峰時刻放水發電,以替代其他較昂貴的發電方式,有降低發電綜合成本之效。
抽蓄發電將水資源循環利用
抽蓄電廠與日月潭風光休戚與共,然而,環湖一圈也難見廬山真面目,得翻過西側的阿里眉山來到南投縣水里鄉,往濁水溪支流的水里溪畔探尋。
來到大觀發電廠廠區,訪客第一眼總被山頂磅礡直下的5支綠色壓力鋼管所吸引,下方連接的土黃色平頂廠房為1934年建成的大觀一廠,明湖水庫則位於一廠北端,順河谷地形而建。
大觀二廠從日月潭西側水社附近取水,水從兩條各2,380公尺及2,350公尺的引水隧道,一路穿過中潭公路下方,再由壓力鋼管輸送至發電機組;明潭發電廠亦有兩條引水隧道,不同是在過河段有明管跨越頭社溪,在明湖水庫下游的水里溪築壩成明潭水庫。
抽蓄發電的原理是,水輪機帶動發電機順轉方向即發電,當離峰用電時段,再利用系統剩餘電力,將發電機反轉作為馬達帶動水輪機,把下池儲存的水順原水路,抽送回上池蓄存待用,如此循環利用,完全不浪費水資源。
來訪這天,大觀發電廠黃陵育副廠長帶領我們走至明湖水庫壩頂,愈靠近山壁的4道尾水閘門,愈能聽見從地底深處傳來的隆隆聲響。「這是大觀二廠正在發電,尾水排放的聲音。整座地下廠房就藏在山腹內,距離下池水面還有70至80公尺深!」黃陵育解釋,這是抽蓄機組的必要深度,「因抽水運轉啟動前,為了減輕動輪的阻力,必須先將原本充滿水輪機的水,利用空氣壓力向下壓。」
深入發電心臟 一窺抽蓄機組奧秘
要進入地下廠房,得從隧道深入。抽蓄電廠的裝置容量大,因此設備也比其他大型水力電廠來得龐大與複雜,而明潭發電廠地下廠房的量體,是所有地下廠房中最大的,其頂拱距地表約300公尺,內部空間縱向高度46公尺、長158.4公尺、寬22.4公尺,看不見的連續壁厚達2至3公尺。
大觀發電廠土木組張立平經理30多年前曾參與抽蓄工程營造,他回憶,「地下廠房開鑿時得另挖橫坑,將土石不斷清運,也要處理岩壁滲水問題。」當時有人形容開挖範圍之大:「將台電大樓結構物橫放進去,綽綽有餘」。
明潭發電廠運轉組林永聯經理與供應組廖宜英經理帶我們穿梭在迷宮般的地下電廠,最頂層稱為地下1樓,為裝機台,6部發電機排成一列,上蓋燈亮表示運轉中,因大修時需要操作起重機進行拆解與組裝,空間設計得空曠、挑高;廖宜英指著屋頂上兩部移動式起重機:「大修時最重的物件是發電機轉子,約重375噸,但一部起重機最大吊重是250噸,因此必須兩部聯合操作才吊得起來。」
走至地下2至5樓,可見水輪機隆隆運轉,各層佈滿穿來引去的各種管路、水閥裝置、調相設備、監測儀表等,侷促空間卻是值班人員每日梭巡的工作場所。曾任值班主任、經歷過傳統人工操作的林永聯說,電廠值班採「4班3輪」制,即連續3天輪值大夜班、白天班、小夜班,第4天休息,如今雖改由值班主任於控制室遠端遙控操作,現場還是需要兩名值班人員定時巡視,遇到操作系統發生異常(例如漏水、漏油),要有停電檢修與故障排除能力。
維修保養有道 隨時上場應戰
為精簡人力,1999年起,明潭發電廠廠長兼任大觀廠長,各廠下設兩位副廠長;大觀發電廠又分一廠及二廠,明潭發電廠另管轄鉅工分廠、水里機組、北山機組、濁水機組,所有機組皆可由明潭發電廠遙控操作。
明潭發電廠許宗源廠長指出,抽蓄機組的起停運轉時間及發電量大小,受電力調度處中央調度中心指揮調度。「抽蓄電廠的特性是,因調度頻繁,設備耗損較大,維護、保養與檢修也相對頻繁。」他解釋,設備維修的頻率,與運轉時間及操作次數有關。以開關場的斷路器為例:抽蓄機組斷路器一天動作4、5次,操作2,000次必須檢修,操作1萬次就得更新。「抽蓄電廠6、7年就達到操作1萬次,其他水力電廠用幾十年還達不到。」
設備維護分為定期檢查及大修兩種。抽蓄機組每8至9年需進行大修,費時4個月,大修的主要項目由電力修護處負責,「光是拆卸就要花20幾天,回裝更難,需要30幾天,中間60天做檢修。」大觀發電廠曾東釗副廠長指出,為了控制工期,大修時會將不同工項一併來做,例如同時進行調速機、勵磁系統、發電機線圈的更新,零件都須事先準備,有些零件還要現場精修。
抽蓄機組大修期間等於缺少一名「備援投手」,對電力調度茲事體大,因此,電力調度處會密切掌握與協調大修時程,「2018年備轉容量在6%以下時,抽蓄機組大修就曾臨時喊停,因為此時電力系統特別需要抽蓄機組補足電力。大修開工後,若有需要延期,也要立刻向調度處說明,以做好因應。」許宗源說。
抽蓄機組必須勤維護,才能保持最佳狀態,隨時上場打仗。2015年蘇迪勒颱風襲臺,深夜裡和平、協和、麥寮發電廠接連全停電(和平、麥寮為民營電廠),導致系統頻率急降,就是靠正在抽水模式的抽蓄電廠緊急跳脫因應,才化解限電危機。又如,2019年8月,麥寮電廠因故障導致3部機組同時跳機,也是靠抽蓄機組自動卸載來穩定頻率,避免限電。
「真英雄是沒有故事可以講的,」電力調度處吳進忠處長曾如此讚揚抽蓄機組貢獻:「因為真英雄第一時間出手就把問題給解了。這就是抽蓄機組的儲能價值。」
再生能源蓬勃發展 抽蓄電廠新使命
因應政府能源轉型政策,目標2025年將有2,570萬瓩的太陽光電與風力併接於台電電網,然而,再生能源具有間歇性及瞬間出力變化劇烈的特性,對於電力系統調度的挑戰大,使得抽蓄機組的調頻服務更受倚重。
許宗源指出,過去2年來抽蓄電廠已經配合再生能源執行調度,今(2020)年太陽能併網大幅躍進,預估到今年8、9月時,太陽能加上風力的「瞬間」發電量將超過400萬瓩,「往後調度只會更加複雜,發、抽次數變得更頻繁,且不一定何時發、何時抽。」許宗源說。
他舉例,以前是白天尖峰時段發電,如今豔陽高照的中午,不可能透過火力電廠降載,只能靠抽蓄機組以太陽能的電來抽水,平衡系統負載,「最近就創下中午3部機同時抽水的紀錄。」
抽蓄機組設備操作次數增加,代表設備維修更頻繁,人力成本也相應提高。曾東釗點出,「不能讓變化追著跑,抽蓄電廠要先做好準備,積極應戰,發揮存在的最大價值。」電廠因應之道包括,年輕同仁都會派去其他廠支援大修,增加交流與磨練機會;建立大修作業指導書,現在還加上縮時攝影,讓核心技術不斷層。「同仁也要有心理準備,未來值班是日班忙、夜班也操。」曾東釗說。
擁抱綠電 與自然共生
面對再生能源併網對系統調度的挑戰,除了兩座抽蓄電廠持續配合調度,電源開發處也正著手進行「大甲溪光明抽蓄水力發電可行性研究」,是利用德基水庫做上池,下游的谷關壩做下池,目前分成「抽蓄式」與「抽水式」兩案,還在綜合考量評估中,將適時提出可行方案。
同時,台電也與民間企業合作研發大型儲能系統,甫於今(2020)年5月中旬啟用的金門塔山發電廠夏興分廠之儲能系統,是重要里程碑;推動中的智慧電網,對於再生能源預測與電網調度亦是必要基礎建設;燃氣複循環機組未來也將加入調頻服務的行列。
承接著百年光輝歷史,日月潭抽蓄發電持續締造傳奇,並許諾日月潭的永續經營,不僅是系統最忠實可靠的備援投手,也是現代電廠的綠色典範。
完整內容請見:
https://tpcjournal.taipower.com.tw/article/3969
♡
複循環機組原理 在 懂能源 Facebook 的最佳解答
🔥 端午懂能源 🔥
端午節連假開始了,各位已經塞在高鐵站、客運站或高速公路上了嗎?如果你是乘客的話,就花點時間聽阿DEN聊能源,順便分享給身旁辛苦開車的駕駛聽吧!
-
說到端午節,大家一定會想到划龍舟... 旁邊剛上岸的濕身正妹猛男...恩哼...除了這個之外,大家最期待的肯定是吃到剛出爐熱騰騰的南部/北部/客家粽拉~ (請各自表述)
-
但你有注意過蒸粽子所使用的能源是什麼嗎?
-
你知道蒸粽子用的能源也常被使用在發電上嗎?
-
燃氣發電目前常使用的技術是複循環機組的應用,特色是,除了以燃氣帶動氣渦輪機(燃氣渦輪機)轉動發電機之外,也運用了氣渦輪機餘熱的特性,利用高溫產生高壓蒸氣推動汽輪機(蒸氣渦輪機),再次帶動發電機。
-
但複循環機組的結構有許多不同的設計,此處阿DEN使用的是以通用動力燃氣渦輪機原理短片的構造來說明,這個原理跟渦輪增壓的概念很相似。至於什麼是渦輪增壓?這個問題只好問阿斯拉了。#BoosterOn
-
影片出處:How a Gas Turbine Works | Gas Power Generation | GE Power, https://www.youtube.com/watch?v=zcWkEKNvqCA
-
#端午節 #燃氣發電 #粽子能源 #戰南北
複循環機組原理 在 政變後的寧靜夏午 Facebook 的最佳貼文
【三哩島41周年長篇大論】
#嫌文字太多可以直接看圖 #或是直接搞懂幾個事實
今天是美國三哩島事故41周年(1979/3/28),也是去年三哩島電廠正式關閉後的半年,你沒看沒錯,一個曾經發生事故的電廠仍持續運轉至去年才與大家道別,而且本來預計運轉至2034年,但礙於美國便宜天然氣競爭下的營運虧損,只好提前打烊。
▋關於三哩島事故簡單的幾個事實:
1. 沒有任何人因為輻射或事故傷亡
2. 有爐心熔毀,但沒有任何爆炸
3. 有核輻射外洩,但是我覺得用滲出或飄出形容比較恰當
4. 實際廠外輻射暴露增加劑量僅一張X光不到
5. 周邊五英里居民曾因事故混亂預先撤離,十天後解除
6. 三哩島一號機運轉至2019年關閉,運轉績效一度為美國最佳
7. 因為三哩島,美國(世界)核工業才用更謹慎態度面對核安
8. 三哩島電廠所在之處的賓州有四成核電
▋PWR反應爐原理
壓水式反應爐(PWR)也是輕水反應爐的一種,另一為沸水式(BWR),如果要用廚房類比,沸水式叫做水煮,壓水式叫做清蒸。壓水式反應爐水循環主要有兩側(Primary and Secondary),一側的高壓冷卻水進入壓力槽,流經爐心吸收熱量後,流出壓力槽,進入蒸汽產生器,加熱低壓低溫的二次側飼水,使飼水沸騰,產生蒸汽,推動渦輪發電機,以產生電力。由於壓水式反應器冷卻水系統的一次側不會產生沸騰,而液態水為不可壓縮,因此為了調節反應器的壓力,反應器的出水管路上裝有調壓槽(Pressurizer),以調節系統壓力。
※調壓槽(事故關鍵)
調壓槽內,一半為水,一半為蒸汽。當冷卻水系統內的水溫因功率增加,或熱量無法移除而上升時,冷卻水體積膨脹,驅使冷卻水流入調壓槽,調壓槽水位因而上升,擠壓調壓槽上方的水蒸汽空間,造成調壓槽壓力升高,此時調壓槽上方的噴灑系統自動打開,灑入低溫的水將部份水蒸汽凝結,降低系統壓力。如果壓力上升幅度太大,噴灑系統不足以有效降低壓力,調壓槽上方的釋壓(安全)閥會自動開啟,將調壓槽內的水蒸汽洩放至圍阻體內的洩壓水槽(Pressurizer relief tank),快速將系統壓力降低。系統壓力降低後,安全閥會自動關閉。
※安全系統
三哩島電廠備有多樣的安全系統,其中較重要的有緊急爐心冷卻系統,及輔助飼水系統。壓水式反應器中,蒸汽產生器二次側飼水是移除爐心熱量的主要途徑,為了防止飼水喪失,爐心的熱量無法排除,因此設計有輔助飼水系統,於主飼水系統故障時自動啟動,代替原飼水泵打水,移除衰變熱。
▋事故過程
1978年12月,三哩島二號機正式商轉。過沒多久,1979年3月28日,清晨四點鐘,三哩島電廠二號機,由於化學除污系統的樹脂發生阻塞現象,使得凝結水泵跳脫,進而也使飼水泵和汽機跳脫(停止發電)。此時,原先備用應該要開啟的輔助飼水系統竟然因為維修時,沒有將進水閥打開,飼水迴路鎖死,導致反應器內衰變熱無法移除,造成反應器壓力快速上升,但調壓槽灑水系統自仍動啟動灑水降壓,釋壓閥亦開啟洩壓,但系統壓力仍繼續上升,觸及反應器急停設定值。控制棒插入爐心,核分裂反應停止。
反應器急停後,功率降低,反應器壓力亦隨之降低。當反應器壓力降至釋壓閥自動關閉點時,閥門卻故障沒有關閉,於是冷卻水由閥門持續流出。由於輔助飼水無法進入蒸汽產生器,使蒸汽產生器內二次側的水已逐漸被燒乾(變成蒸氣)。另一方面,釋壓閥的開啟造成反應器壓力持續下降,導致緊急爐心冷卻系統(ECCS)自動啟動,開始將高壓硼水注入爐心。(發生到這邊只過了50秒)
但操作員此時不知道蒸汽產生器已經沒有飼水(因為儀器燈號被掛牌遮蔽),且調壓槽釋卸壓閥發生故障沒有關閉(儀表燈號卻已經顯示關閉),直到4:08分的時候才找到原因,手動打開了輔助飼水泵的進水閥,但因為二次迴路上方充滿蒸氣進水不順,一次迴路也因為蒸氣產生導致熱交換不完全,接下來的注水措施則都因為卸壓閥故障導致處理誤判(過早關閉冷卻水注水系統),倒置爐上方產生蒸氣,燃料棒開始露出反應毀壞,到6:18分後,終於發現釋壓閥問題,以手動關閉之後,便全心處理反應爐內的衰變熱移除,最終在19:51危機暫時宣告解除,但最終爐心燃料棒也熔毀了將近50%,而即便填滿了冷卻水,爐內仍有少許氫氣泡,因為擔心發生氫爆,持續採取維持壓力緩慢注水以及洩壓排氣,最終於4/1解除危機,好個愚人節快樂。不過事後也證實當時氫氣量與爐內氧氣並不足以發生氫爆。
▋輻射外洩
過程中,因為自調壓槽釋壓閥流出的冷卻水進入位於圍阻體的洩壓水槽,洩壓水槽很快的被注滿,釋壓保護片破裂,使輻射水溢流到圍阻體的集水區,輻射氣體也因此瀰漫於圍阻體中。集水區水位升高,圍阻體集水機的抽水機自動啟動,將水送進輔助廠房,而輻射物質便隨著蒸發水從廠房煙囪緩慢洩露(飄出)於大氣之中。
3/29與3/30的時候,廠方則將氣體導向了放射廢氣槽,讓放射氣體得以先行過濾再做排出,最後排出的物質為惰性氣體以及碘131(較有害),大約37萬兆貝克,就是37000,000,000,000,000,000貝克,但結論是,這看起來很長一串數字所造成的輻射劑量,根據NRC,環保署,衛福部、能源部和賓州等幾個獨立的小組也進行了研究估計,僅約0.08~1毫西佛,在場工作人員也僅1毫西佛,均小於背景輻射,完全無法對人體造成傷害。
過程中,也因為現場秩序混亂,以及一度測得較原背景值高出百倍的輻射劑量,因此州長決定暫時疏散方圓五英里的孕婦以及小孩,而疏散於是發後十天解除,居民都得以返家。
在事故發生後的幾個月中,儘管有人質疑輻射對三浬島地區的人類,動物和植物生命可能造成的不利影響,但沒有一個問題與事故直接相關。監測該地區的各種政府機構收集了成千上萬的空氣,水,牛奶,植被,土壤和食品的環境樣本,全面調查和評估得出的結論是,儘管反應堆受到了嚴重破壞,但實際釋放對個人的身體健康或環境的影響可忽略不計。
▋後續改善
或許三哩島事件的發生,除了廠房設計改善外,或可怪罪於運轉人員的失誤。若運轉人員沒有因為誤信燈號,錯誤的將高壓注水系統關閉的話,整個事件也不會惡化。但從較廣泛的角度來檢討整個事件,該檢討的是,運轉人員有沒有受到適當的訓練、控制室的設計是否考慮到運轉人員操作上的便利、以及運轉員是否能充分掌握電廠重要系統的運轉狀況;還有在緊急狀況下,運轉人員能否獲得必要的協助等問題。因此,不再完全依賴調度人員的判斷,建立一連串的「是、否」機制應對事件發生,
同時核能界了解到:運轉人員的臨場應變對核能電廠安全的重要性,電廠控制室的人機介面也需要適當的改善,以及電力公司間運轉經驗相互交流的必要性。後一項的認知促成了美州核能運轉協會 (Institute of Nuclear Power Operation,簡稱INPO)及國際核能運轉組織 (World Organization of Nuclear Operation,簡稱WANO)等國際組織的成立,這些組織的主要功能即為核能電廠運轉經驗的交流,希望透過相互合作,提昇電廠的安全,其中INPO也成立了核電廠操作員培訓課程,建立完善了操作人員的認證制度。法規管制單位也意識到,核能界對爐心熔毀的物化現象瞭解不足,因此大幅度提高相關研究的經費。
從安全的角度來看,三哩島事件對核能電廠安全所帶來的衝擊是正面的,它促成了核能界全面檢討核能電廠的安全運作模式,發覺許多隱藏性盲點,進而提出相當多的改善方案,這些改善措施直接提昇了電廠的安全。
▋事後影響
三哩島事件之後,法規管制單位提出不少新的規定,要求電力公司改正缺失,其中不少牽涉到硬體設施的改善,這些要求使得核電的成本大幅攀升,美國也因此有好長一段時間未在新建核電廠,導致該國核工業呈現自我放飛狀態,以致後續要建置新電廠時,供應鏈廠商挑選太過複雜難以整合(大家都能做,但不知道怎麼做),因此讓新核電廠的建置處處碰壁,直到川普政府決心傾國家之力發展核能。
此外美國以及世界反核運動的興起,電影China Syndrome的渲染下讓民眾對核能更加恐慌,促成了反核流行文化產業,也讓美國人對於核電的態度在當時即不信任,但到現在,發生事故的賓州有四成電力來自核電。
三哩島電廠方面,事故二號機最後的清理費用為9.73億美元,相較於福島或車諾比事故少非常多,最後它的發電機也賣給了其他核電廠做升級汰換使用,加減補貼。至於一號機,因為事故壓力,它只能拿出更好的表現來說服所有人它值得被使用,也確實它表現卓越,較美國其他核電機組的指標都更加凸出,創下了616天營運不間斷的紀錄,因此於2009年時,申請再延20年通過,但因為化石燃料產業的快速變動,頁岩油氣挖掘讓天然氣成本快速下降,最後即便核電便宜,但背負2號機債務的1號機也無法與天然氣在市場競爭,因此決定於2019年關門,三哩島電廠共計營運45年,正式進入除役階段。
但其實只差那麼一小步,一號機就得以因為賓州加入的區域溫室氣體倡議計畫RGGI (Regional Greenhouse Gas Initiative),因為零碳電力的特性相對獲得碳稅補助,繼續生存,同樣位於賓州的Beaver Valley電廠即因此政策繼續營運。
▋參考資料
WNA-Three Mile Island Accident
https://reurl.cc/E7Z55v
Backgrounder on the Three Mile Island Accident
https://reurl.cc/V65bbA
三哩島事故時序
https://reurl.cc/Y1jKAD
Pennsylvania Move to Join RGGI May Save Nuclear Plant
https://reurl.cc/L37KkK
事故圖片取材HyperPhysics
https://reurl.cc/R4b3Z6