深度:中科院AI勢力崛起
2020-01-21
智東西
文 | 韋世瑋
我們將時針倒回至七十年前。
己丑年甲戌月,東四馬大人衚衕10號的冬天全然未見絲絲涼意。這看似並不起眼的北京城中一隅,正醞釀着一場影響中國科技發展的深刻變革。
小衚衕裏,時年57歲的郭沫若被正式任命爲中國科學院院長。歷史以此爲起點向前奔涌,往後領導班子不斷更替的七十年間,我國自近代以來百廢待興的科技產業發生了翻天覆地的變化。
中國科學院(簡稱中科院)是我國在自然科學和高新技術綜合研究領域的最高學術機構。自成立以來,逐漸建成了完善的自然科學學科體系,覆蓋物理、化學、環境與生態學等學科,爲我國國家安全和科技硬實力的發展上,成爲了不可或缺的國家戰略科技力量。
從首次人工合成牛胰島素,到第一臺原子力顯微鏡(AFM)的誕生;從第一臺大型向量計算機系統,到首款通用處理器芯片「龍芯1號」的自主研發……中科院一路高舉科學振興的旗幟,帶領我國無數高端學科和科技產業萌芽、興起與爆發。
在學術研究領域,中科院旗下擁有12所分院,超100家科研院所,中國科學院大學、中國科學技術大學、上海科技大學(與上海市共辦)均爲中科院所屬的全國重點大學。建院以來,中科院已培養了近千名科技領軍人物和科技尖子人才,涌現出一批又一批的高科技創業者。
隨着人工智能的大火再度把世界科技熱潮點燃,中科院仍保持着強勁實力屹立於世界AI領域的發展潮頭。
放眼世界,2019年全球頂尖計算機科學機構排行榜CSRankings中,中科院以5.3分排名AI全球榜第四,僅次於清華、北大和卡耐基梅隆大學。
回望中國,中科院一手甩出寒武紀、雲從科技等估值10億美元的AI獨角獸,一手穩握中科曙光、科大訊飛和中科創達等多支A股王牌,在羣雄割據混戰的AI戰場中肆意廝殺。
國內外AI科技競賽一波未平一波又起,不知不覺間,中科院AI勢力的星星之火在2019年AI落地生死戰中,歷經了數萬家企業落幕背後的暗潮撲殺,正以爆發之態燎原至漫山遍野。
溯源中科院這場AI勢力崛起的背後,不僅是瞭解我國最高科研學術機構的技術根基和人文底蘊,我們對中科院系的冰山一角進行層層剖析的同時,也嘗試從中窺見這派AI勢力在當下產業落地生死戰的底牌與新活法。
一、中科院的根:研發與人才四十餘年灌溉
中科院系AI企業的野蠻爆發與生長,源於中科院深埋於我國科技土壤的根,離不開研發與人才長年累月的滋養和灌溉。
中科院的研發實力有多強?2019年《Nature》雜誌公佈的2019自然指數(Nature Index)年度榜單中,中科院以1678.64分一馬當先,超越845.54分的哈佛大學,猛衝全球領先研究機構第一的寶座。
細數我國改革開放四十餘年,在國民經濟、國家重大需求乃至世界科技前沿領域,亦活躍着中科院的身影。
2018年,中科院系統梳理了它在四十年間所研發的40項具有代表性、標誌性的重大科技成果。
其中在國家重大需求領域,中科院微電子所組織全國性產學研用聯盟,七年間不斷攻克集成電路(IC)產業研發瓶頸,實現22nm高K介質/金屬柵工程、14nm FinFET器件、新型閃存器件和可製造性設計等關鍵技術突破。
與此同時,在關鍵工藝模塊上,中科院微電子所還形成了較爲系統的知識產權佈局,擁有專利2406項,其中國際專利483項。
中科院持續在各個領域加強核心技術攻堅,實際上爲其在AI產業的爆發打造了一支又一隻精兵強將。
根據中國新一代人工智能發展戰略研究院在2019年5月發佈的《中國新一代人工智能科技產業發展報告》,截至2019年2月28日,我國共有75家AI領域的非大學科研機構,中科院下屬科研院所爲38家,以51.4%的佔比盤踞我國非大學科研機構陣營的半壁江山。
不僅如此,中科院下屬科研院所還強勢霸榜了我國AI領域專利數Top 10非大學科研機構。數據顯示,從第一名的中科院計算所,到第十名的中科院上海微系統所,中科院共爲我國AI產業貢獻了15457項AI技術專利。
人才之於研發,亦如園丁之於園林。
從成立至今,在郭沫若、方毅、盧嘉錫、周光召、路甬祥、白春禮一代代院長的帶領下,中科院如海納百川般吸引了無數身居科研金字塔頂尖的學術巨擘,遍佈數學物理、生命科學、信息技術和化學等多個領域。
現階段,中科院學部共有830名院士,107名外籍院士,平均年齡高達73歲。
81歲的並行算法、高性能計算專家陳國良院士正是其中的一員。他曾開發了國產曙光並行機「用戶開發環境」商用軟件,並帶領團隊成功研製出萬億次高性能計算機「KD-90」,爲我國高性能計算領域的自研核心技術添上了濃墨重彩的一筆。
外籍院士中,時年72歲的微電子學家、FinFET之父胡正明提出的鰭式場效晶體管(FinFET)芯片工藝技術,不僅成功讓芯片晶體管構造從原先的2D邁入3D大門,還打破了曾限制半導體產業發展許久的「摩爾定律」,爲全球半導體產業快速進軍先進工藝領域作出了巨大貢獻。
在近千名院士的披荊斬棘之下,雲從科技創始人及CEO周曦、寒武紀創始人陳天石與陳雲霽、雲知聲創始人樑家恩等一衆出身於中科院的後起之秀,亦在AI領域嶄露頭角,力圖創造一個又一個創業佳話。
縱觀中科院的科研實力與人才優勢,自成立七十餘年——尤其是改革開放後的四十一年間,日復一日地滴匯成海、聚沙成塔,不僅推動了我國科學技術硬實力的復興,亦爲如今中科院系AI公司在產業的爆發埋下伏筆。
二、中科院系AI企業的三大主戰場
如果說AI用了六十年的時間,才讓世界重新關注到它。那麼,中科院自改革開放後花了四十餘年,才讓中科院系企業在當下迎來爆發,這並不意外。
往前,我國的AI產業有中科曙光、科大訊飛和新鬆機器人等公司,在高性能計算、語音、機器人等領域開創基業的篳路藍縷。
往後,國內AI領域則有寒武紀、雲從科技和雲知聲等AI獨角獸與初生牛犢將優勢傳承,在AI芯片、AIoT、計算機視覺等市場不斷釋放潛力。
2019年年初,全球創投研究機構CBInsights發佈32家全球AI獨角獸公司名單。其中,出身中國的10家企業中,寒武紀、雲從科技和雲知聲爲中科院系創企,自動駕駛創企Momenta也有多名高管出身中科大。
中科院系在國內的競爭力同樣強勁。2019年8月,賽迪研究院發佈《2019賽迪人工智能企業百強榜研究報告》,在綜合實力TOP100榜單中,科大訊飛、中科曙光、寒武紀和漢王科技等9家中科院系企業榜上有名。
四十多年來,不斷在AI市場展露野心的中科院系企業已在多個領域開枝散葉。
從當前全局來看,中科院系企業的戰場主要集中在計算機視覺、AI語音和AI芯片三大方向。
它們從成立之初就開始逐漸影響着這些行業,在利用創新技術瓜分市場的同時,也重新定義着傳統市場的變革之路。
1、計算機視覺(CV)
計算機視覺是如今AI領域中十分熱門一個分支,同時也是極具商業化價值的賽道。
其中,以人臉識別爲核心技術的AI企業已廣泛遍佈國內市場,與安防、金融、自動駕駛和消費電子等應用場景緊密結合。
在這一市場中,中科院系老牌企業則有中科創達首當其衝。
中科創達成立於2008年,它針對成像技術開發了一系列圖像處理和智能視覺算法,既有面向衆多領域檢測人臉的年齡、性別和情緒的Face ID方案,也有面向工業、安防和交通等領域的視覺缺陷檢測。
尤其在智能網聯汽車方面,中科創達融合底層操作系統技術、Righware Kanzi 3D開發技術和智能視覺AI技術,進一步提升用戶的駕駛體驗。
據悉,中科創達在全球已擁有超過100家智能物聯網汽車客戶,其業務增速在2019年上半年約爲74%。
深度:中科院AI勢力崛起
另一廂,現在市場中老生常談的「CV四小龍」中,雲從科技則是中科院系麾下創企,成立4年就已拿下10億美元估值。
雲從科技在計算機視覺領域擁有三大核心技術,分別爲3D結構光人臉識別技術、跨鏡追蹤(ReID)技術和人體3D重建技術,在安防、金融、交通和零售等行業都有落地應用。
例如,其人臉識別技術能夠對圖像中的人臉進行屬性分析,以判斷年齡、性別、膚色、是否佩戴眼鏡和麪部遮擋物等信息,實現毫秒級響應。
2018年,國際調研機構Gen Market Insights曾發佈《全球人臉識別設備市場研究報告2018》,數據顯示,中國是全球人臉識別設備的最大消費市場,雲從科技的市場份額排名第一。
2、AI語音
要說中科院系企業在AI語音領域的最大王牌,科大訊飛當仁不讓。
自1999年成立至今,科大訊飛在語音識別、語音合成、聲紋識別和自然語言處理(NLP)等技術領域,已逐漸成爲中國AI語音行業的領頭羊。
科大訊飛的AI語音業務覆蓋智慧教育、智慧醫療、智慧城市和智慧汽車等領域。其中,在智慧教育方面開發了訊飛學習機,能夠幫助孩子定位弱項學科,制定個性化的學習方案。
科大訊飛董祕江濤曾表示,科大訊飛語音識別的市場佔有率已居全國第一。
而在新秀陣營,雲知聲和聲智科技等創企的潛力亦不可小覷。
例如,當前處在國內語音交互領域第一梯隊的雲知聲,2012年時就已將深度學習技術應用到語音識別領域,隨後還提出了面向物聯網的「雲端芯」產品體系構想。
雲知聲自主研發的雲知聲開放平臺3.0,利用語音識別、語義理解、語音合成和音頻轉寫等技術,爲移動物聯網、智能家電、可穿戴設備和醫療等領域提供AI語音解決方案。
據瞭解,目前雲知聲的覆蓋用戶已達2億,其中開放語音雲覆蓋的城市爲470餘個,覆蓋設備超9000萬臺。
3、AI芯片
在我國的半導體產業發展史上,脫胎於中科院計算所的龍芯中科自2001年以來,陸續研發龍芯1號和龍芯2號系列芯片,打破了我國缺乏自主研發CPU芯片的歷史。
而往後看,尤其是過去五年間AI專用芯片需求的爆發,中科院也孕育出了寒武紀和雲知聲兩家AI芯片獨角獸公司,以及中科睿芯、欣博電子和啓英泰倫等重要玩家。
其中,創立於2016年的寒武紀在2018年6月完成數億美元的B輪融資後,市場估值已達25億美元(約167億人民幣)。
寒武紀打造的兩代智能處理器IP,曾被搭載於華爲麒麟970和麒麟980兩款SoC中,幫助華爲一炮打響「真正的AI手機」口號。
2019年11月,寒武紀面向邊緣AI計算領域,最新推出了思元220芯片,擁有高安全、低延時和高帶寬三大優勢。
隨着思元220芯片的推出,寒武紀的AI芯片正式形成雲、邊、端三個方向的完整佈局,進一步滿足現今碎片化AI市場的多個應用場景需求。
三、回溯三大技術源頭,AI勢力的厚積薄發
追根溯源,如今中科院系AI勢力的逐漸崛起,與中科院AI歷史的變遷與演進離不開關係。
與我國曆史發展脈絡同步,中科院在結束了徘徊中前進的兩年後,國內AI的發展也逐漸醞釀着解禁。
1978年,我國著名數學家、中科院院士吳文俊提出的「幾何定理機器證明」獲得了全國科學大會重大科技成果獎,爲我國之後的AI體系構建奠定了重要基礎。
直到上世紀80年代,中國航天之父、中科院院士、兩彈一星元勳之一錢學森等先輩開始主張開展AI研究,讓我國的AI領域研究逐漸開始活躍。
隨着我國AI技術和思想的層層「破冰」,加之1994年中科院啓動支持高水平科技領軍人才引進的「百人計劃」,中科院乃至我國的AI從人才到技術、從學術到產業、從機構到企業,才一步步地蓬勃發展起來。
歷史滾輪之下,我國的AI發展脈絡與中科院息息相關。
當我們將回溯的目光放至中科院系AI企業的「身世」上,不難發現,這些企業的出身可大致分爲兩派。
一派以研究員爲出發點,其公司創始人、CEO和主要高管均爲中科院及下屬研究所出身,由研究員獨立或聯合創業而成;
而另一派則以科研項目爲出發點,公司在成立前曾爲中科院及其下屬研究所的科研項目,通過技術成果轉換後,才正式成立爲公司繼續發展。
但不論是研究員的出身,還是科研項目的孵化,這些公司的技術起點幾乎主要源於中科院的三家關鍵機構——中科院自動化研究所、中科院計算技術研究所、中科院聲學研究所。
1、中科院自動化研究所
設立於1956年的自動化所,不僅是我國最早成立的國立自動化研究機構,也是我國最早開展類腦智能研究的國立研究機構。
自動化所主要涉及生物特徵識別、機器學習、視覺計算、自然語言處理、智能機器人和智能芯片等領域的研究,漢王科技、中科唯實、銀河水滴、中科慧遠和中科視語等公司均從中孵化落地。
截止2018年底,自動化所共擁有696名科技人員,包括中科院院士2人、發展中國家科學院院士1人、IEEE Fellow 9人。
在AI領域,自動化所亦扮演着重要的開拓者角色。
上世紀90年代,自動化所以控制科學爲基礎,率先佈局AI研究。緊接着從2010年起,其AI研究方向進一步細化,開始在類腦智能研究領域出招。
據悉,自動化所通過架構設計創新,曾自主研發了量化神經處理器(QNPU),在資源受限的芯片上實現大規模深度神經網絡的獨立計算。
而在生物特徵識別技術方面,自動化所還實現了從中距離到遠距離的可識別生物特徵信息全覆蓋,包括虹膜識別、人臉識別和步態識別,已在國家衆多重要安全領域應用落地。
2、中科院計算技術研究所
計算所同樣創立於1956年,是我國第一個專門從事計算機科學技術綜合性研究的學術機構。
計算所主要研究信息處理、網絡安全、大數據處理、智能技術和虛擬現實技術等領域,曾研發出我國衆多的「第一」歷史性時刻,爲我國的高端計算機技術、數字化技術和通用CPU技術等方面作出了巨大貢獻。
例如,我國的第一臺通用數字電子計算機、第一臺109乙大型通用晶體管計算機、第一顆通用CPU芯片「龍芯1號」,以及全球PC市場份額第一的聯想集團前身皆誕生於此。
同樣,計算所亦是中科曙光、寒武紀、中科智芯、中科視拓和中科物棲等一衆AI企業的搖籃。
截至2015年,計算所的研究隊伍已超500人,其中中科院、工程院院士共5名,正高級專業技術人員70名。
而在未來,計算所也將計劃實現三個100億的產業目標,包括中科曙光市值達到100億美元、嵌入到華爲等企業的IT產品銷售100億人民幣、創業公司市值達到100億人民幣,真正成爲我國計算機產業的源頭。
3、中科院聲學研究所
與自動化所和計算所相比,聲學所則較爲「年輕」些,它成立於1964年。
聲學所主要負責聲學和信息處理技術學科的應用基礎,以及高技術發展研究,面向我國的海洋、安全、能源和生命健康等領域。
其中,聲學所的水聲物理與水聲探測、通信聲學和語言語音信息處理、聲學與數字系統集成等技術,不僅孵化了聲智科技等AI語音企業,同時也培育了一批如海天瑞聲創始人賀琳、小聲科技創始人陳孝良等產業人才。
截至2018年底,聲學所共有專業技術人員794人,包括正高級專業技術人員133人,副高級專業技術人員255人。
在國家重大科研項目領域,聲學所亦參與研製了我國「蛟龍」號載人潛水器的研發與應用,爲我國載人深潛技術的發展作出了突出貢獻。
中科院AI技術的「黑土地」不止於此,中科院軟件研究所、微電子研究所、半導體研究所等科研機構,同樣催生了衆多極具潛力的中科院系AI企業。
四、中科院的時代發展機遇
中科院系AI勢力的燎原,不僅僅是七十多年來科研技術和人才培養的厚積薄發,抓住了AI產業「甦醒」的時代機遇,亦是我國政策和中科院科技成果轉換的催化。
自我國的科技發展進程翻篇到新世紀,國家層面對AI技術和產業的嗅覺愈發靈敏。
國家高層領導人在2014年中國科學院第十七次院士大會、中國工程院第十二次院士大會開幕式上發表的一次重要講話,首次高度評價了AI和相關智能技術,無形中大力推動了我國AI技術的發展。
一年後,國務院正式頒佈了《中國製造2025》,加快推動新一代信息技術與製造技術融合發展,將推進智能製造作爲我國製造強國戰略的主攻方向。
至此,AI逐漸被提到了每一項重要產業中不可或缺的核心技術位置。
在國家政策的積極帶動下,中科院及下屬各個研究所亦開展了一場自上而下的政策規劃。
但立足於產業,如何更好地實現科技成果轉移轉化也成爲了中科院各項政策規劃的重要方向。
實際上,技術成果轉化的難點在於如何尋找技術產業化的方向。這常常缺乏專業的服務機構和人才,同時還面對部分科技成果轉化的政策不完善、科技成果與市場需求脫節等問題。
在政策方面,以下屬研究所爲例,中科院計算所在2016年制定了自身的「十三五」規劃,一是計算所發展模式要從自主創新轉變到引領創新,對標斯坦福大學;二是通過建設中科院網絡計算創新研究院,引領中國「信息高速鐵路」技術的發展;三則是支撐企業實現三個100億的產業目標。
以地方爲例,2018年,中科院科技促進發展局、中科院北京分院、中關村科技園區管理委員會共同推出了《促進中科院科技成果在京轉移轉化的若干措施》,通過支持科技成果轉化平臺建設、實驗室共享等十項舉措,推動更多科技成果在北京轉化落地。
此外,中科院還全資設立了國科創新公司,不斷探索產業技術研究院、技術企業孵化器和聯動創新產業園三種平臺的科技成果轉換模式。
截至目前,國科創新已實現了120多項科技成果轉換服務,覆蓋AI、智能製造、智能物流和智能電網等領域,孵化企業的融資規模已達到2.8億人民幣。
結語:七十載征程,中科院仍笑傲AI江湖
時光如流水,七十年的風吹雨打,中科院已然成長爲我國AI技術和產業力爭站立於世界潮頭的國之重器。
順延着它的歷史軌跡,我們可以看到,它AI勢力的強勢崛起,既有歷史的累積、人才培育的影響,也有一代代產業經驗累積後的良性循環。回顧中科院系AI企業的漫漫長路,它爲我國AI產業如何利用好產學研之間的合作優勢,提供了一個新的角度與思考方向。
但同時,我們也需意識到,在當下殘酷的AI落地戰和全球科技競賽激烈的環境中,我國整體的AI技術實力與國外仍存在一定的差距。
我國AI玩家們將要面臨的,不僅是全球科技競賽給市場格局帶來洗牌的陣痛,還需面對顛覆性技術爲各領域市場,乃至人們的生活帶來的巨大挑戰。生,便能乘着市場和資本的東風一躍而起,闖進商業落地的頭部陣營;死,便只能被大浪拍在岸邊的礁石上,隨着時間流逝被市場和資本遺忘。
未來,中科院系AI企業又將如何書寫這一頁歷史征程?時間將會告訴我們答案。
附圖:▲中科院研究單位統計表
▲我國自然科學工作者代表會議籌備會合影
▲自然指數全球百強機構前十名榜單
▲中科院改革開放四十年40項重大科技成果
▲我國AI領域專利數Top 10非大學科研機構(圖源中國新一代人工智能發展戰略研究院)
▲中科院學部院士年齡統計(圖源中科院官網)
▲陳國良院士
▲胡正明院士
▲賽迪網發佈2019年中國AI企業綜合實力百強名單
▲計算所成立公司情況(圖源計算所官網)
資料來源:https://bangqu.com/YDah49.html
金融體系架構圖 在 李開復 Kai-Fu Lee Facebook 的最佳貼文
捷報!全球首個AI協同及大資料安全領域國際標準有望明年出臺
下文來自創新工場微信公眾號:
…………………………
2019 年 3 月,創新工場南京國際人工智慧研究院執行院長馮霽代表創新工場當選為 IEEE 聯邦學習標準制定委員會副主席,著手推進制定 AI 協同及大資料安全領域首個國際標準。
▍創新工場高管當選 IEEE 聯邦學習標準制定委員會副主席
IEEE,全稱 Institute of Electrical and Electronics Engineers,即國際電氣與電子工程師協會,是目前全球最大的非營利性專業技術學會。
IEEE 下設的標準協會是世界領先的標準制定機構,其標準制定內容涵蓋人工智慧等前沿資訊科技,以及通信、電力和能源等多個科技領域,對全球科技發展具有舉足輕重的影響。
目前,IEEE 標準協會已經制定了 900 多個現行工業標準,包括眾所周知的有線與無線網路通信標準等。
聯邦學習(Federated Learning)是一種新興的人工智慧基礎技術,其設計目標是在保障大資料交換時的資訊安全、保護終端資料和個人資料隱私、保證合法合規的前提下,在多參與方或多計算結點之間開展高效率的機器學習。
聯邦學習有望成為下一代人工智慧協同演算法和協作網路的基礎。
聯邦學習系統架構圖,圖片來自微眾銀行2018年9月發佈的《聯邦學習白皮書 V1.0》
馮霽表示,IEEE 聯邦學習標準制定委員會將圍繞聯邦學習技術與相關的基礎 AI 技術積極開展工作,大力推動 AI 時代下的隱私保護、資料安全、應用安全等領域的體系規範化和技術標準化,意義深遠。
未來,創新工場基於人工智慧工程院的研發平臺,也將進一步開拓人工智慧前沿科技與真實商業場景的結合,通過廣泛的科研合作、商業合作、高端 AI 人才培養等扎實工作,迎接 AI 商業化時代的到來。
▍首個 AI 協同及大資料安全國際標準有望明年出臺,多巨頭已參與
近年來,伴隨人工智慧技術的高速發展,資料安全和隱私保護問題成為業內關注的焦點。
大資料是 AI 時代的核心「能源」。
如何在 AI 時代既保障使用者的個人資料隱私,又促進大資料協作和交換的順利發展?如何面對資料帶來的倫理道德挑戰?怎樣避免資料壟斷的出現、打破資料孤島的困境?……這些都是各大學術及行業會議上,中外專家學者不斷討論的重要議題。
一個簡單的例子是:今天我們每個人都在手機上使用輸入法,而輸入法為了做到儘量精准,就要基於用戶個人的輸入習慣訓練人工智慧模型。
傳統方案難免要將使用者個人輸入的原始資訊上傳到雲端進行統一訓練,這一做法過度收集了用戶隱私,使用戶隱私面臨被濫用的風險。
而新興的聯邦學習技術可以在完成相同功能的情況下,做到只在用戶的手機端訪問使用者個人輸入資訊,不上傳任何隱私資料。手機端和服務端在保證隱私安全的情況下協同訓練。
IEEE 聯邦學習標準項目是國際上首個針對人工智慧協同技術框架訂立標準的項目,由國際著名人工智慧學者楊強教授領銜擔任主席,對數字信任、科技向善的培育意義深遠,為人工智慧行業的進一步發展開闢了新的道路。
馮霽透露,按照正常進度,IEEE 聯邦學習標準將在兩年內推出。
目前,已有 30 餘個互聯網巨頭公司、政府單位、企業和高校參與到標準制定工作中,僅國內參與方就包含中國電信、騰訊、京東、小米、微眾銀行、順豐、平安一賬通、招商金科、深圳市標準技術研究院、香港科技大學、香港理工大學等。未來也期待有更多的企業和單位參與。
▍創新工場積極參與國際 AI 技術標準制定
創新工場人工智慧工程院執行院長王詠剛表示,此次與 IEEE 標準制定委員會的合作只是創新工場積極參與國際科研與科技標準工作的一個縮影。
未來,創新工場人工智慧工程院還將與科研同行一起,積極推動前沿人工智慧科技的標準化、規範化工作。
另外,創新工場董事長兼 CEO 李開復博士也曾在公開演講中多次提及聯邦學習技術的重要性,希望推進人工智慧安全問題的治理達成國際共識,並利用技術手段及標準化方法克服潛在的災難發生。
目前,創新工場人工智慧工程院正在積極參與聯邦學習技術的研究推進。
創新工場人工智慧工程院成立於 2016 年 9 月,以「科研+工程實驗室」模式,規劃研發方向,組建研發團隊。目前已經設有醫療 AI、教育 AI、機器人、機器學習理論、計算金融等面向前沿科技與應用方向的實驗室。其中,機器學習理論實驗室將主要參與聯邦學習演算法和應用框架的研發。
事實上,這並不是創新工場第一次參與國際 AI 領域技術標準的制定。
今年 1 月,世界經濟論壇宣佈成立「AI Council 人工智慧委員會」,李開復博士出任聯席主席,將致力於幫助人們面對人工智慧時代帶來的新挑戰,包括個人資料保護、資料倫理道德等問題。
李開復博士表示,在是否需要制定規則、制定什麼樣的規則問題上,不同的國家和文化對此有不同的看法。他希望借助世界經濟論壇的平臺與 AI 委員會,幫助大家分享想法,讓更多的公司和國家直接進行溝通與對話,減少對彼此的誤解。
▍個人簡介
馮霽,師從南京大學周志華教授,專注于新型深度學習演算法和理論的研究。其參與的深度森林系列研究,在學術界和工業界獲得了較為廣泛的關注和影響。現擔任 IEEE 聯邦學習標準制定委員會副主席,以及多個人工智慧頂級會議包括 NeurIPS-19,AAAI-18, ICML-19 的程式委員。他在資料驅動下的計算金融具備資深的研發和實戰能力,對金融時間序列分析,全棧式人工智慧系統的搭建和技術人員的培訓上有著豐富的經驗。
目前擔任創新工場南京國際人工智慧研究院執行院長,在魯棒性和安全性人工智慧以及計算金融領域,開展一系列的研究與落地工作,從整體上負責南京研究院的團隊建設、科研拓展、應用研發、學術交流與合作等工作內容。