粉絲團的朋友 ~ 有人去退貨了嗎 ???
雖然這個還不在我的採買清單內,且說法很多元
但技嘉這種果斷止血的方式也算是個不錯的解決方法
#你懷疑就來退貨
同時也有1部Youtube影片,追蹤數超過4萬的網紅TechaLook 中文台,也在其Youtube影片中提到,今天 TechaLook 要來介紹一項電腦主機中很容易遺忘但卻默默工作的產品:那就是電源供應器!這款金魔冰核電源供應器擁有80 PLUS® 金牌節能認證,850w的供應量,足夠滿足一般玩家需求。 金魔冰核有著下面特點: *創新DHT(Dynamic Hybrid Transformer Topol...
「電源供應器 負載測試器」的推薦目錄:
- 關於電源供應器 負載測試器 在 傻瓜狐狸的狐言亂語 Facebook 的精選貼文
- 關於電源供應器 負載測試器 在 Facebook 的最讚貼文
- 關於電源供應器 負載測試器 在 愛搞電的港都狼仔 Facebook 的最佳貼文
- 關於電源供應器 負載測試器 在 TechaLook 中文台 Youtube 的最佳貼文
- 關於電源供應器 負載測試器 在 [閒聊] 電源測試文閱讀小指南- 看板PC_Shopping 的評價
- 關於電源供應器 負載測試器 在 測試電池放電能力150W電子負載(放電測試器)開箱試用- YouTube 的評價
- 關於電源供應器 負載測試器 在 電源測試器好用嗎? 真的可以測出衰減問題嗎? 的評價
- 關於電源供應器 負載測試器 在 販售二手 固緯GW Instek SPS-2415 電子式可調直流電源供應 ... 的評價
電源供應器 負載測試器 在 Facebook 的最讚貼文
【缺電有三種,為什麼出現這兩種?】(二之一)
興達電廠連續發生事故造成停電之後,有人,尤其是主張重啟核四運轉的人,又在主張這是台灣缺電的證明,而我們也看到蔡總統出面強調台灣並不缺電。
把電力出現任何狀況都要歸之於缺電,歸之於少一座核四,確實是模糊焦點甚至扭曲焦點。然而,蔡總統光說台灣並不缺電也不夠完整,政府光是寄望「三接」來渡過能源轉型,也會錯過核心問題。
基於我2016年參與過「開放台電」觀察所得,加上近年來追蹤看到的新情勢,所以要寫兩篇文章,希望能𨤳清一些障眼法的迷霧,但也指出日益嚴重的兩個危機。
興達電廠接連導致停電的情況,我非常肯定不是個案,而是預警。
如果政府不面對問題的根源,接下來不只蔡英文總統要為越來越多類似情況而頻繁道歉,並且說終究會爆發災難性的後果也不為過。
相反地,如果政府真正面對核心問題,不但一些短期問題的解決方案可以說垂手可得;一些許多人認為是兩難的長期問題,譬如護藻礁和廢核,其實也不難找到兼顧之道。
我寫兩篇文章來談。這是第一篇。
--------高速公路塞車有三種情況,電也是--------
「缺電」的情況,有三種。用大家都熟知的高速公路塞車來比喻,方便理解:
第一種,是高速公路因為蓋的數量不夠,造成塞車。這是「結構性」問題。有些落後國家的基礎建設不足,電廠不夠,每天全國要平均停電一段時間,就是這種情況。
第二,公路數量夠,但是每到年節連假期間,如果不事先疏通流量,會在尖峰時刻大塞車。這是「時間管理性」問題。台灣每到夏天高熱月份,尖峰時刻大家對電力的需求突然高漲,負載超過預期,可能導致跳電而停電,屬於這種情況。
第三,公路的養工處出了問題,維護保養不力,路面出現塌陷等等,造成塞車。這是「技術管理性」問題。台電的工作人員操作系統、設備出錯,而導致停電,屬於這種情況。
高速公路發生大塞車,我們需要判別到底是哪種原因所導致,才決定是否要新建高速公路。我們不會一看到塞車,就主張要新建高速公路。同樣的,發生停電情況,也該如此。
但是長期以來,台灣有些人,不論電力出現任何狀況,都堅持是結構性造成的缺電問題,電廠不夠,需要新建或擴建。
近三十年來,這些人的代表就是擁核派。1993年,當時的經濟部長江丙坤說,台灣如果沒有核四,到2010年每天就要缺電六小時,像菲律賓一樣落後。
現在時間過去了快三十年,不但過了2010,連2020都過去了,台灣也從來就沒有每天缺電六小時。時間早已證明核四是個假需求,台灣從沒有出現結構性缺電的問題。只是擁核的人卻始終堅持台灣就是少個核四。
然而,到目前為止,台灣雖然沒有結構性缺電的問題,卻一直籠罩在「時間管理性」缺電和「技術管理性」缺電的陰影之下。
--------問題的根源:不重視調節用電需求--------
我們來看最近三次大停電的起因。
2017年的大潭電廠815大停電,台電說是承攬商更換控制系統的電源供應器時操作失誤所導致,這是第三類技術管理性問題導致的。
今年513興潭電廠導致的大停電,經濟部先說是「用電高於預期」的原因,那就是第二類時間管理性的問題;但後來又改口,說是測試操作錯誤,那就是第三類技術管理性的問題。
至於17日晚間又發生停電,台電承認是「因負載突升,供電能力不足」。換句話說,也就是類同於「用電高於預期」,屬於第二類時間管理性問題。
顯然,這三次都是「時間管理性」問題和「技術管理性」缺電問題。
那為什麼會出現這種情況?
問題的根源是:台電不重視調節大家的用電需求。
要改善「時間管理性」缺電問題,就是要設法調整大家用電時段,舒緩尖峰負載。
一個用常識就可以想到的方法是:訂出「分時電價」,不同時段的電價高低不同,讓用戶知道他在尖峰時段用電要付出比平常高的電價,在離峰時間用的話則會享受到比較便宜的電價。這和年節連假時期為了鼓勵大家不要在尖峰時段全部塞在高速公路上,會提供夜間比較便宜或免費的費率,而很多人會使用,是一樣的道理。
這幾天台電在呼籲大家節電,但是如果沒有「分時電價」和搭配的工具,這種呼籲是很蒼白無力的。
經濟上有「看不見的手」。提供用戶「分時電價」之後,大家自然會趨低避高,各自享受了比較便宜的電價,整體也舒緩了電力尖峰負載時段的壓力。不需要台電呼籲,用戶自己就會達成那種效果。
電力用戶,主要分兩大類:以家庭用電為主的低壓電用戶,和工業用電的高壓電用戶。
我們看台電是在怎麼面對這兩類用戶。
<面對低壓電用戶四年推動不到百分之一的努力>
全台灣有1,460萬低壓電用戶,直到今天,絕大多數都是仍然要兩個月手抄一次電表。手抄電表,用戶要兩個月後才看到電費帳單,「分時電價」設計得再有吸引力,大家也不會有體感,實際也無從配合。
2016年「開放台電」提醒調節用電需求之後,台電也說他們知道此事的重要,說要努力設法「移峰填谷」。當年底台電也開始推廣「住商型簡易時間電價」。然而,直到去年底,推廣了四年,低壓電用戶選用這種方案的,全部才12萬戶,連1,460萬戶的百分之一都不到。
這麼重要的改善「時間管理性」缺電問題的方案,努力了四年才推廣不到百分之一,不能不說怠惰吧?
和台電推廣的「智慧電表」搭配起來看,這件事就更有意思。
「分時電價」,最好能和可以及時顯示用電情況的工具相搭配,高端的就是「智慧電表」。
但是從馬英九總統執政時要求台電安裝百萬戶智慧電表,台電一直拖拉,到2015年只做到1萬戶。民進黨執政後,有一整年時間,台電新加的智慧電表用戶更只有351戶。其後幾年在各方監督下,到2020年底,總算達成了安裝100萬戶的目標,但這連低壓電1,460萬用戶的百分之十都不到。
可是,從另一方面來看,我們不能不問另一個問題:連推廣「智慧電表」都安裝了100萬戶,怎麼會推廣「住商型簡易時間電價」反而只推了12萬戶?
怠惰了這麼久之後,現在頻頻因為「用電高於預期」、「因負載突升,供電能力不足」而爆出這麼大的停電問題,不是也合理的嗎?
--------面對高壓電用戶四年推動百分之一多一點的努力--------
再來看工業用電的高壓電用戶。這些高壓電用戶,全國有25,000戶。五年前,就全都安裝了智慧電表。但是當時我們就指出:沒有進行用戶的分類整理,也沒有善用智慧電表的功用。
這些高壓電用戶雖然安裝了智慧電表,但台電在如何調整他們用電時間上,仍然主要用人工做溝通努力。
2016年接任台電董事長的朱文成不無得意地告訴我,5月31日最緊張那天,是「需量競價」救了台電半條命。朱文成說的「需量競價」,就是誘使企業用戶在尖峰負載期間少用電,然後把節省下來的電賣回給台電。換句話說,也是另一種版本的「分時電價」。而那天,光是用這個辦法,朱文成說「省了0.4 GW」的電。0.4GW是什麼概念?很大。核一廠一個發電機組才0.6GW。
我聽朱文成講他們多麼辛苦努力去和一些用戶溝通,用上了多少人脈和關係,問他既然這個方法有效,又有智慧電表,為什麼不全面有系統地實施?
朱文成說他們會。
但是同樣地,在這一塊,時間過了五年,他們仍然在原地踏步。
針對高壓電用戶,直到去年,台電才設計出按24小時每小時不同的「高壓即時電價」。
而試用的戶數有多少呢?才300戶。佔 25,000戶的百分之一多一點。
那這百分之一的試用戶產生了多大效益呢?
台電自己說「在電價最高時段平均約有14%的抑低量」。
所以不能不問一個問題:如果百分之一不到的試用戶都可以產生這麼大的效用,那如果全面實施呢?
明知道會有很大的效益卻拖延不前,很難不說他們是怠惰吧?
但,台電到底為什麼如此怠惰呢?
--------只重增加供給所造成的惡性循環--------
「開放台電」的時候,我們就已經指出:台電對推動需求管理的怠惰,主要是只知道「增加供給」而不知「調節供需」的思維。並且,「增加供給」傾向於「新建傳統形式的大電廠」來增加。
而台電形成這種思維,又有四種原因:
一,工程師背景多。
推動分時電價、用戶的需求管理等等,需要精通於消費心理、細密的行銷規劃,而台電主要是由工程師主導。
二,是公務員背景。
民營電力公司做好用戶的需求管理,能把「調節供需」做到越微細,越會受到肯定,尖峰負載時間能做到低空掠過,是表示對需求掌握到恰到好處。但是以台電的公家背景,工作人員會基於公務員心態不想冒那麼大風險,「調節供需」不如「新建電廠」來得便利、保險。
三,長期執著於對大電廠的迷思。
即使要新建電廠,台電也一直習慣於建大型電廠,而不願意呼應新的分散式、多樣發電的趨勢。所以過去台電長期不把再生能源放在眼裡。
對大電廠的迷思,在過去國民黨長期主政,核電幫對台電的影響看得特別清楚。核電機組都是大機組,並且核電幫從不掩飾對廣建電廠的企圖。
2008年總統大選剛結束,馬英九勝選的四月初,台電主管說,包括當時正在興建中的核四在內,台灣只有八部核電機組,還可以再增加十部核電機組,也就是他們準備建全部18 部核電機組。
2018年「以核養綠」公投的第一場辯論之後,擁核人士的胃口更真正露了底。他們不只是要重啟核四而已,他們要的是台灣可以達到 20部核電機組的規模。
即使現在民進黨執政,核電廠不可能再新增,但是台電一直想用增加電力供給,而不是用調節電力供需的思維,顯然還調整不過來。
於是我們看到一個惡性循環。
因為他們還是把主力放在努力增加電力供給,所以就繼續忽視管理用戶的需求,在推動「分時電價」、用電的需求管理上不用心,會如此怠惰;同時,因為忽視調節電力的供需,所以就只能繼續倚重他們增加電力供給的思維和習慣。
並且,我們也可以合理地推測他們一個心理。
那就是如果他們認真推廣分時電價、智慧電表等等,這些推廣成功,「時間管理性」缺電情況就不會發生了。不出現「時間管理性」缺電問題,他們就沒有新建電廠的理由了。
高速公路的年節連假都把流量疏通好的話,怎麼能主張還要新建高速公路呢?
--------雙胞胎問題:技術管理性缺電--------
但是台電主要想新建電廠來增加電力供給,而不想改善「時間管理性」缺電問題,必然會衍生出另一個雙胞胎問題:「技術管理性」缺電的問題。
原因很簡單:一心把新建電廠當解方,就不會好好維修現有發電機組、輸配線系統等等。一心想新建高速公路當解方,就不會好好維修現有高速公路,當然養工處會出問題,維修容易出問題、操作容易出問題。
近年來三次大停電中「技術管理性」問題這麼多,也不是沒有原因。
2018年普悠瑪事件爆發後,我們發現台鐵當局對車輛ATP 的漠視與零件的失修,是關鍵因素。因為政府編列給台鐵的大量預算,大部份流向下屬負責新增軌道建設的鐵道局,而另一負責日常營運的台鐵局則陷於人力不足、車輛維修不足、營運管理系統老舊的困境。
台電也有和台鐵一樣的問題。
台電也有新建電廠和維修輸配線路的兩手工作要做。台電也出現豐厚資源都流向新建電廠,維修輸配線路的單位卻資源不足、遭受漠視的問題。
「開放台電」期間我們研究到和輸配線路相關的問題,台電顧左右而言他。而結案報告裡,最後我們也建議林院長接下來要仔細追查、監督六輸和七輸的可行性報告。輸配線路的善加維護,不只可以改善供電效能,還涉及基本的安全。
以815停電事件來說,雖然是中油員工在操作上失誤所造成,但是台電如果平素多加注意內部管理,在許多重要關節上多分配些資源裝置防呆、防錯機制,以爭取出現意外的時候多些處理時間,不致於因為一個人的疏失就造成偌大風波。
但是如果台電想到供電緊張就要透過新建電廠來增加供給的心態不改,他們不會把心力和資源放在調節需求,改善「時間管理性」缺電;也不會放在維修輸配線路、改善維護作業上,所以「技術管理性」缺電的情況也會跟著頻繁。
但這些還只是問題的一部份。
(明天繼續第二篇:以台積電為代表的「貨櫃車」問題。)
電源供應器 負載測試器 在 愛搞電的港都狼仔 Facebook 的最佳貼文
(新增測試設備、部分測試增加/修改說明)
簡單描述的小結論:
1.轉換效率越高越好(表示電源於同樣輸出下越省電,廢熱產生越少)
2.內部高溫點越少、溫度越低越好(表示高溫環境及長時間運作下,電源內元件耐久力較長)
3.各路電壓調整率/交叉調整率越低越好(表示輸出電壓穩定)
4.斷電維持時間(Hold-up time)較長的,較不怕電燈閃一下的供電瞬斷狀況或UPS切換延遲
5.從輸入零電壓通電直接全負載輸出,電源供應器不應出現故障或其他異常(例如炸機)
6.各路低頻/高頻漣波越小越好(表示電源輸出電壓帶有較少雜訊,品質佳)
7.動態負載下各路電壓變動幅度越小、次數越少、時間越短越好(表示電源電路暫態響應好)
電源供應器 負載測試器 在 TechaLook 中文台 Youtube 的最佳貼文
今天 TechaLook 要來介紹一項電腦主機中很容易遺忘但卻默默工作的產品:那就是電源供應器!這款金魔冰核電源供應器擁有80 PLUS® 金牌節能認證,850w的供應量,足夠滿足一般玩家需求。
金魔冰核有著下面特點:
*創新DHT(Dynamic Hybrid Transformer Topology)動態混合變頻變壓諧振技術,實現超高省電效能,及動態負載環境下高穩定電力輸出。
*全球領先專利風扇智慧溫控技術,提供最佳散熱及靜音均衡表現。
*使用高效能日系電解電容,提供最大輸出與穩定性。
*工業級強悍耐久設計用料,全年無休環溫50°C足瓦穩定輸出。
*散熱警衛,電源供應器風扇於關機後,持續運作30至60秒,協助系統排除餘熱,延長系統耐用度。
*多重安全設計,包含:過電流、過電壓、(交流)低電壓、(直流)低電壓、過負載、過溫度、短路與防突波&湧浪等,提供系統全方位的保護。
以上資料參考自保銳科技官方網頁: http://www.enermax.com
感謝您收看今天的介紹,如果你還沒訂閱我們的頻道,請使用下面連結快速前往,並且把今天的影片分享給朋友看吧!
官方網站:http://www.techalook.com.tw
Facebook:http://www.facebook.com/techalook.com.tw
G+:http://plus.google.com/112644496801981643217
產品測試:http://www.coolaler.com/content.php/200-%E9%AB%98%E6%AA%94%E8%B3%AA%E6%84%9F-ENERMAX-Revolution-87-850W-%E6%A8%A1%E7%B5%84%E5%8C%96%E9%9B%BB%E6%BA%90%E6%B8%AC%E8%A9%A6/view/4
電源供應器 負載測試器 在 測試電池放電能力150W電子負載(放電測試器)開箱試用- YouTube 的推薦與評價
有了這台電子 負載 , 測試電源 輸出、電池放電能力都很方便調整功率大小,可以取代之前用燈泡、水泥電阻等當負載。 ... <看更多>
電源供應器 負載測試器 在 電源測試器好用嗎? 真的可以測出衰減問題嗎? 的推薦與評價
... 電源供應器都是最後被釐清的項目但是不可能再買一顆新的來測試,請問這種電源測試器可以測出些微衰減現象嗎?...(電源供應器 ... 沒負載不太有用! ganrc ... ... <看更多>
電源供應器 負載測試器 在 [閒聊] 電源測試文閱讀小指南- 看板PC_Shopping 的推薦與評價
狼窩好讀版:
https://wolflsi.pixnet.net/blog/post/67908465
電源測試文閱讀小指南Part II
Part II,新增測試設備、部分測試增加/修改說明
每次發表電源測試文後,很多網友都會詢問該如何看懂裡面的數據,或是分出好壞,也有
多數網友表示看不太懂,這個問題困擾在下許久,這次提出一篇電源測試文閱讀小指南,
希望能對閱讀電源測試文有所助益
在下的電源測試環境及主要測試設備如下:
▲GWinstek固緯PEL-2004A主機框加四部PEL-2040A電子負載模組,每個模組最大功率350W
,透過群組組合方式連接待測電源+12V,最高可消耗1400W
▲Chroma 63030單機電子負載二部,每部最大功率300W,分別連接待測電源3.3V及5V,也
可調配支援+12V負載
▲400W電子負載一部,用作彈性調配及充電器測試
▲HIOKI 3332 POWER HiTESTER(測量交流輸入電壓、電流、實功率、功率因數)
▲SANWA PC7000、SANWA PC5000、FLUKE 289數位電表(測量待測電源連接負載的輸出線組
接頭上3.3V/5V/12V輸出電壓)
▲Tektronix TDS3014B數位示波器(測量漣波及動態負載各路電壓波形)
▼HIOKI 8808/8841 MEMORY HiCORDER資料記錄器,擷取待測電源Hold-up及Soft-Start記
錄
▼FLIR E4改E8紅外線熱影像相機,拍攝待測電源紅外線熱影像
以上設備多是在下自費購入新品或二手品,HIOKI 8808/8841則是回收螢幕故障品並自行
維修後加入測試
★80PLUS效率測試
這個測試就是在輸入115V環境,依照80PLUS測試報告中的各路電流設定,去測試電源在
10%、20%、50%、100%下的實功率及功率因數,並算出轉換效率,是否符合白牌/銅牌/銀
牌/金牌/白金/鈦金的認證需求
電源供應器於115V輸入下,各種80PLUS認證所要求的10%/20%/50%/100%輸出最低效率值。
目前只有鈦金Titanium有看10%輸出的效率值,不同效率認證,對功率因數也有不同要求
電源供應器轉換效率越高,表示同樣的輸出瓦數,其交流輸入耗電量越小,多部電腦運作
以及長時間使用下也會反映在電費的減少上;轉換效率高同時也代表電源運作時產出的廢
熱量越低
功率因數(Power Factor,PF)包含電壓/電流波形相角差(Phase Angle)及總諧波失真率
(Total Harmonic Distortion,THD%),與傳統電感性/電容性負載因電流波形落後/領先
電壓波形不同,交換式電源供應器因為輸入端橋式整流器運作特性,會讓電流波形發生畸
變,進而影響總諧波失真率THD%,而使功率因數降低
下圖左邊為未帶功率因數修正的交換式電源供應器輸入交流電壓及電流波形,綠色電壓波
形為家用交流電正弦波,但紅色電流波形因整流器運作特性而畸變成尖波狀,電流波形失
真率提高而使功率因數降低
下圖右邊為帶主動功率因數修正(Active Power Factor Correction,APFC)的交換式電源
供應器輸入交流電壓及電流波形,APFC電路運作時會讓紅色電流波形趨近綠色電壓正弦波
波形,降低電流波形失真以提高功率因數
當交換式電源供應器的功率因數較好時,不只交流輸入線電流可以降低,也表示不會因電
流波形失真畸變,在電力線上產生諧波干擾影響其他家電產品
進行80PLUS效率測試同時,也會比較在不同電壓取樣點下,對整體效率數據的影響。當
3.3V/5V/12V電壓取樣點是在電源輸出線組末端插頭,其電壓量測數據會比起從電源本體
未使用插頭所測量的數值要偏低一些,主要原因就是電源本體內部配線方式、模組化連接
器及輸出線組,會隨著輸出電流增加而使壓降增大,導致兩組電壓取樣點的數據有所差異
,同時也可以從兩者電壓及效率數值差異,來得知此電源在內部配線、模組化連接器、輸
出線組對輸出所產生的影響
效率測試記錄表如下圖:
★不同靜態負載百分比的3.3V/5V/12V輸出電壓變動及轉換效率測試
測試電源於不同靜態負載百分比的綜合輸出及純12V輸出下3.3V/5V/12V的電壓變動數據,
可看出不同負載下電壓變化的趨勢及穩定性。正常各路電壓變動範圍不應超出正負百分之
五(3.3V為3.135V至3.465V,5V為4.75V至5.25V,12V為11.4V至12.6V)
測試同時也會記錄當下輸出百分比的轉換效率,目前電源多採用DC-DC經12V轉換出
3.3V/5V電壓,綜合測試下3.3V/5V電流在測試中段就會拉到其規格標示的總和功率滿載,
因疊加DC-DC的效率損失,效率結果會偏低;純12V輸出測試因3.3V/5V空載,可直接表現
出電源供應器內部12V功率級的轉換效率,效率結果會偏高,這是與80PLUS效率測試不同
之處
這裡的測試電壓取樣點是在連接負載的輸出線組末端插頭上,所以包含了內部配線、模組
化連接器、輸出線組所產生的壓降損失,較容易呈現出真實使用狀況
綜合輸出記錄表如下圖:
純12V輸出記錄表如下圖:
也可以從上面表格所記錄的3.3V/5V/12V電壓數值,計算出電壓偏移幅度及負載調整率的
百分比,公式如下:
電壓偏移幅度百分比 = (電壓最大值-電壓標稱值) / 電壓標稱值 * 100%
負載調整率百分比 = (電壓最大值-電壓最小值) / 電壓標稱值 * 100%
舉例來說,上面綜合輸出表格3.3V(標稱值)於8%至99%輸出下,最大值為3.3263V,最小值
為3.2814V,則電壓偏移幅度為0.79%,負載調整率為1.36%
★偏載測試
於12V維持空載(電流0)下,測試電源輸出3.3V滿載(輸出電流達到規格標示)、5V滿載(輸
出電流達到規格標示)、3.3V/5V滿載(3.3V+5V總和功率達到規格標示)的各路電壓變動,
正常各路電壓變動範圍不應超出正負百分之五(3.3V為3.135V至3.465V,5V為4.75V至
5.25V,12V為11.4V至12.6V)
上面純12V輸出下所測得的各路電壓數據,因這時3.3V/5V空載,也能表現出12V偏載下的
各路電壓變動
偏載測試記錄表如下圖:
★紅外線熱影像測試
透過紅外線熱影像相機,觀察電源於滿載輸出下,內部各部元件、外殼背面(有把熱導到
外殼的機種)、模組化輸出插座部分(模組化的機種)的高溫點分布狀況。測試時會將電源
原裝的風扇自外殼拆下,直接放置在內部元件上方,於開放的常溫環境(28℃)下開始進行
綜合輸出及純12V輸出負載測試,在測試接近/達到100%輸出時(約開始測試一小時後)暫時
將風扇掀開,拍攝紅外線影像後再放回去。測試進行中風扇仍會對元件進行散熱,不過因
為沒有裝上部外殼,風扇氣流引導狀況會稍微不同於正常使用狀態
內部高溫點溫度越低,表示其熱量產出較少或經過適當散熱處理,對於高環境溫度及長時
間運作下,元件較不易因為長時間高溫而影響其性能及耐久力
電源測試中,取下的風扇直接放在內部元件上方
電源內部熱影像如下圖:
模組化輸出插座熱影像如下圖:
★斷電維持時間(Hold-up time)測試
當電源供應器運作中斷電,內部儲能元件(電容)可以維持輸出一小段時間,此為斷電維持
時間(Hold-up time)。當家用電源發生壓降/瞬斷、停電時UPS進行備用電源切換時,輸入
交流電源會被切斷一小段時間再恢復供應,在斷電維持時間內電源供應器可維持各路電壓
輸出,不讓電腦硬體發生重新啟動或是關機的現象
依照規範,交流輸入中斷後,電源供應器於全負載輸出狀態下各路輸出要能維持至少17ms
,Power Good(PG)信號要能維持16ms,才會到達輸出驟降轉折點,過了驟降轉折點後,電
腦硬體就會因電壓驟降而關閉或重新啟動。另外也要注意開始壓降點,部分電源在達到驟
降轉折點前會先出現緩慢壓降的現象,若壓降幅度過大(降低超過5%,以12V來說就是低於
11.4V),電腦硬體也可能會因為壓降幅度過大而出現重新啟動現象
測試方式,交流115V輸入下待測電源12V/5V/3.3V滿載輸出,將輸入交流斷電後,從交流
電壓中斷處開始測量12V/5V/3.3V輸出至驟降轉折點的時間差
Hold-up time測試結果說明如下圖:
★軟啟動時間(Soft-start time)與電壓上升時間(Rise time)
電源供應器從通電到達全負載輸出這段時間,這段時間電源供應器因為內部電容充電,為
了避免零件受到過大電流衝擊,各路輸出電壓會緩慢上升,所以交流通電一段時間後,各
路輸出才會啟動。另外,從輸入零電壓通電直接全負載輸出,電源供應器不應出現故障或
其他異常(例如炸機)
依照規範,各路輸出電壓從0上升至穩定值的上升時間(Rise time)應在0.2至20ms之間,
一般來說12V的上升時間會較長,3.3V/5V上升時間會較短
測試方式,待測電源從交流115V通電處開始測量,到12V/5V/3.3V滿載輸出穩定值的時間
差
Soft-start time/Rise time測試結果說明如下圖:
★空載漣波
主要是測試電源在空載狀態下3.3V/5V/12V輸出的低頻/高頻漣波,目前高效率電源多採諧
振設計,因為諧振透過頻率調變(FM)來控制輸出功率,在空載/極輕載狀態下會超出頻率
可調變範圍,這時候為了避免輸出超壓,諧振控制器會進入硬開關脈寬調變模式(Hard
Switching PWM)或是跳週期/爆發(Skip/Burst)模式,其所採用的模式會反映在12V空載輸
出漣波上,透過示波器觀察12V的空載漣波,可以了解到該電源在空載/極輕載狀況下所採
取的處理方式
輸出的漣波越接近正常輸出狀態,表示空載/極輕載下對輸出影響越小
測試結果如下圖:
★綜合3.3V+5V+12V滿載漣波
漣波,就是一個附著於直流準位之上的交流成份雜訊,此交流成份包含週期性與隨機性之
訊號,英文稱為PARD (Periodic And Random Deviation),由於交換式電源供應器採用高
頻交換技術,搭配輸出濾波電路,可以將交流市電轉換成各元件所需的直流電壓,經交換
式轉換後,會在直流成份中含有少許交流成份雜訊(漣波),若漣波過大將會干擾被供電的
元件,可能使其產生誤動作或出現當機。依照規範,+3.3V/+5V/+12V的最大漣波Vp-p(峰
值對峰值)不得超過50mV/50mV/120mV
進行綜合3.3V+5V+12V滿載漣波測試,會將電源拉到其規格標示的最大3.3V/5V總和功率,
加上12V總輸出達到/接近電源規格標示的100%功率值(或當下測試設備能達到的最大值),
並測試當下的+3.3V/+5V/+12V輸出低頻/高頻漣波。漣波電壓數值越小的,表示電源整體
輸出電壓品質越好
測試結果如下圖:
★純12V滿載漣波
跟綜合3.3V+5V+12V滿載漣波不同之處,是3.3V/5V維持空載以排除3.3V/5V的DC-DC所產生
的影響,只把12V負載消耗到電源供應器規格標示的100%功率值(或接近值),並測試當下
的+3.3V/+5V/+12V輸出低頻/高頻漣波。漣波電壓數值越小的,表示電源整體輸出電壓品
質越好
為何排除DC-DC的影響?因為DC-DC同樣採交換式電路設計,除本身輸出會產生交流成分雜
訊(漣波)外,電路交換過程中也會對輸入端”注入”帶有交流成分雜訊(漣波),也就是會
有額外的雜訊被注入12V迴路,所以採用DC-DC空載方式來降低其對12V輸出漣波的影響,
以表現出12V功率級的漣波表現
測試結果如下圖:
★動態負載下各路電壓變動最大幅度、維持時間
上面的測試主要是針對電源供應器的”靜態負載”測試,也就是維持固定的電流消耗值,
並得知當下的各路電壓以及轉換效率。動態負載測試主要測試電源在固定升降斜率及週期
下進行輸出電流高低升降變化時,對輸出電壓所產生的變化及對其他輸出的影響,主要目
的是測試該電源輸出暫態響應能力,用來模擬電腦元件實際使用中負載高低變動狀況
當負載電流(如下圖灰色線)在兩個電流值間快速變動時,因為電源供應器反應速度不夠快
,所以電壓(如下圖紅色線)會出現瞬間往上/往下較大振幅的變動,所以會在最高/最低之
間產生較大的Vp-p峰值對峰值數值(如下圖綠色箭頭標記),之後內部電路開始進行修正,
修正的時間為高峰維持時間(如下圖藍色箭頭標記),同樣受到電源暫態響應速度影響,有
些情形下會在修正過程中產生連續上下振盪的現象
各路動態負載參數設定:
3.3V與5V:電流值2為15A,電流值1為5A,上升/下降斜率為1A/微秒,週期1/2時間為500
微秒
12V:電流值2為25A,電流值1為5A,上升/下降斜率為1A/微秒,週期1/2時間為500微秒
週期1/2為500微秒時會產生1kHz的動態電流,未來會計畫加入其他頻率的動態電流測試
測試結果如下圖:
藍色/紫色/綠色波型在上方黃色波型上升/下降交接處的擺盪幅度最小、擺盪次數越少、
擺盪時間越短者,表示該電源的暫態響應越好。另外因為目前電源設計大多採12V功率級
搭配DC-DC轉換出3.3V/5V,所以當其中一路進行動態負載測試時,其他輸出電壓也同樣會
受到其影響而產生變動
簡單描述的小結論:
1.轉換效率越高越好(表示電源於同樣輸出下越省電,廢熱產生越少)
2.內部高溫點越少、溫度越低越好(表示高溫環境及長時間運作下,電源內元件耐久力較
長)
3.各路電壓調整率/交叉調整率越低越好(表示輸出電壓穩定)
4.斷電維持時間(Hold-up time)較長的,較不怕電燈閃一下的供電瞬斷狀況或UPS切換延
遲
5.從輸入零電壓通電直接全負載輸出,電源供應器不應出現故障或其他異常(例如炸機)
6.各路低頻/高頻漣波越小越好(表示電源輸出電壓帶有較少雜訊,品質佳)
7.動態負載下各路電壓變動幅度越小、次數越少、時間越短越好(表示電源電路暫態響應
好)
以上的測試項目介紹,希望各位能更容易閱讀在下的電源測試文章
報告完畢,謝謝收看
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 39.8.69.15
※ 文章網址: https://www.ptt.cc/bbs/PC_Shopping/M.1555061123.A.89D.html
基本上INTEL的門檻就是50mV/50mV/120mV,只要低於這門檻就是通過
當然能越低是越好
理想元件不存在,元件不可能不發熱,所以當然最好條件是溫度越接近室溫越好
power本身內部半導體/變壓器等大多可以承受一定溫度,溫度越低對元件越好
尤其是電容
(倒地)
※ 編輯: wolflsi (114.40.156.162), 04/14/2019 15:39:06
更新Part II,新增測試設備、部分測試增加/修改說明
※ 編輯: wolflsi (39.13.36.97 臺灣), 07/02/2020 15:20:04
... <看更多>