【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)
同時也有48部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本習題練習計算 0 ‧ ∞ 且含蓋高斯符號的類型 【勘誤】 無,有任何錯誤歡迎留言告知 【習題】 檔案:https://drive.google.com/file/d/19m9ss4eVSTQxTa3p9wKOtTeUrPAIkMI9/view 簡答:可在張旭的生存用微積分社團下載 ...
「高斯定理數學」的推薦目錄:
- 關於高斯定理數學 在 數學老師張旭 Facebook 的最佳解答
- 關於高斯定理數學 在 C.C.M Math Facebook 的最讚貼文
- 關於高斯定理數學 在 年輕闖王 尚明 Facebook 的最讚貼文
- 關於高斯定理數學 在 數學老師張旭 Youtube 的精選貼文
- 關於高斯定理數學 在 數學老師張旭 Youtube 的最佳貼文
- 關於高斯定理數學 在 數學老師張旭 Youtube 的最佳貼文
- 關於高斯定理數學 在 MM07 丈量世界Measuring The World(2005) :高斯與等差數列 ... 的評價
- 關於高斯定理數學 在 高斯定理求圖形數的問題- 數學板 - Dcard 的評價
高斯定理數學 在 C.C.M Math Facebook 的最讚貼文
【數感生活——你跟哪一位數學家同天生日】
最近因為柯文哲市長組黨,又引用了自己跟蔣渭水同天生日,很多人開始查自己跟哪一位名人同一天生日。
不如,也來看看你跟哪一位數學家同一天生日吧!
曾經受到Apple支持的MacTutor計畫,蒐集了許多數學史的資料,其中包括了一份年曆,點進去,你就可以知道自己跟哪幾位數學家同一天生日,以及,嗯,哪幾位數學家在你生日的那天過世。
如果你發現跟自己生日同一天的數學家之前沒聽過,還有機會可以更進一步了解這些為了數學奉獻一生的智者。以8/6柯文哲、蔣渭水的生日來說,同一天生的還有一位數學家John Wilson。他留下一個定理:
如果p是質數,則1+(p-1)!一定可以被p整除!
目前兩位確總統參選人,蔡英文總統的生日是8/31,同一天的有Hermann von Helmholtz,就是大家可能有聽過的「亥姆霍茲線圈」、「亥姆霍茲方程」的那位亥姆霍茲。
韓國瑜市長生日6/17,同一天生日的有……錯視數學藝術大師艾雪!看來這一天生日的都很善於營造讓人驚豔的,嗯,錯覺?
最後也提供幾位大數學家生日,讓大家看看有沒有中獎
牛頓:1月4日
高斯:4月30日
歐拉:4月15日
傅立葉:3月21日
帕斯卡:6月19日
笛卡兒:3月31日
拉普拉斯:3月23日
阿貝爾:8月5日(跟蔣渭水只差一天!)
拉馬努金:12月22日
不知道大家跟哪一位數學家同一天生日呢?
高斯定理數學 在 年輕闖王 尚明 Facebook 的最讚貼文
【分享】(關於學習與夢想的關聯…)
~本文來自和學校老師溝通的改版~
最近,原本對數學很有興趣的老二(三年級),最近竟然在面對數學作業時,產生了抗拒、出現很多負面情緒。
原本他的動作雖然不快,但是通常只會在國語作業和英文作業抗拒,主要是重複性太高,對他而言太無聊,所以重複越多次的抄寫,他就很排斥。
當然,適度的重複是對於孩子在學習、把陌生事物在腦神經當中建立迴路,所以我有和他溝通過基本的練習是必要的。
但這次我看他的數學作業、課堂的筆記,我發現也出現大量重複性的內容。
在時間議題上的計算,除了直式之外,還要求記錄成有單位的橫式,並且時間和時刻的表述不能用錯。
我想和老師分享一下我自己對數學的看法:
在孩子小學階段,以激發他們的「好奇心」、「學習興趣」為主,讓他們能理解所學。至於非常精準的單位或是符號,我覺得是可以有彈性的。
而公式以及太制式的解題流程,讓學生不斷重複,會讓學生把數學學成文科,偏向記憶:哪些規則是老師會給分的,哪些不會。久了,也就不思考了!
很多數學問題,有很多的解法,大數學家高斯,提出『代數學基本定理』,一生給出了四種不同的證明。同一道菜,可以有許多創意的做法,這些概念在生活中也是一樣的。
如果只給孩子一條固定的路,恐怕會壓縮孩子思維與想像力。
小時候,很多人都有夢想,為何到出社會後,失去了夢想?那是因為小時候,環境開放,沒有太多的限制,及至國高中開始,課業上的規範越來越多,各種科目的「標準答案」也有一定的要求,慢慢地,為了迎合老師父母得分的想法,不再敢有太多自己的其他想法。
雖然我在補教界很長的時間,但是我的理念是盡可能的少給公式,甚至不給公式。目的就是為了讓學生真正懂數學,而不是只會背題型、解法,甚至套入一些他們根本不理解的公式。
在高中的物理的時候,我相信大家也有看過自己同學亂套公式的例子吧?何時該用動量守恆、何時會有動能守恆、何時用到力學能守恆…一概不清楚,但為了解題亂套一通,有時剛好猜對,有時猜錯,重點是~對,不知為何對!錯,不知哪裡錯!
然後成績高高低低起起伏伏,直到大考見真章。
我有一個長輩的好朋友,孩子讀台北前三志願的高中,在知名數學補習班補習,成績永遠在校排名前1/3,最後大學指考,2分。這就是這個現象的最佳註解。
以上,想和大家分享的,讓孩子在興趣建立的黃金過程,讓他對這些有意思的科目保持熱情!若抹滅了熱情,長大,自然也不敢夢想了!
高斯定理數學 在 數學老師張旭 Youtube 的精選貼文
【摘要】
本習題練習計算 0 ‧ ∞ 且含蓋高斯符號的類型
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
檔案:https://drive.google.com/file/d/19m9ss4eVSTQxTa3p9wKOtTeUrPAIkMI9/view
簡答:可在張旭的生存用微積分社團下載
社團: https://www.facebook.com/groups/changhsumath666.calculus
【講義】
請到張旭老師臉書粉專評論區留下你的評論,然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結 👉 https://www.facebook.com/changhsu.math/reviews
【附註】
無
【丈哥的話】
嗨!大家好,我是丈哥
第十一份習題來計算跟夾擠定理相關的極限
要留意的就是觀察到哪些項有發生振盪
以及要如何找到更大、更小的函數
如果你喜歡我們的教學影片
請幫我分享給更多正在學微積分的同學們,謝謝~
【學習地圖】
【極限篇重點十一習題】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXi9a02MYJJadw5sMIqoII-T)
習題 11-2 (https://youtu.be/Hx3KDHAEd54)
習題 11-4 (https://youtu.be/Bk2okq5eUqQ)
習題 11-6 (https://youtu.be/HRCiYqNGF2M)
習題 11-8 👈 目前在這裡
習題 11-10 (https://youtu.be/SCY6rg9keV0)
【版權宣告】
本影片版權為張旭 (張舜為) 老師與丈哥 (王重臻) 共同所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
Twitch:https://www.twitch.tv/changhsumath
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #極限篇習題 #丈哥講解
高斯定理數學 在 數學老師張旭 Youtube 的最佳貼文
【摘要】
此範例演示了老大比較法的進階題型,即便一開始的型式不為多項式分式,但通過整理以後仍然變成多項式分式的型式,那就可以使用老大比較法
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsumath/reviews
【習題】
重點十之一:https://drive.google.com/file/d/1O2hcZgPw87gFClgabCwuO-CMVIPPEw9g/view?usp=sharing
偶數題講解影片:https://www.youtube.com/playlist?list=PLKJhYfqCgNXih3a_3DDXOUk0hRHMfg53_
簡答:https://www.facebook.com/groups/changhsumath666.calculus/files
微積分討論群:https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工學院學生觀看
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
重點一:極限的直觀定義 (https://youtu.be/hZT2fOcxSJw)
重點二:極限的嚴格定義 (https://youtu.be/gCkhy0aODZk)
重點三:一些基本函數的極限 (上集) (https://youtu.be/qoIOFz1D_W4)
重點四:極限運算定理 (四則運算篇) (https://youtu.be/d6PzP8ApFgk)
重點五:極限運算定理 (合成篇) (https://youtu.be/h2X2yyGyWHQ)
重點六:去零因子求極限 (https://youtu.be/vqoc59G-gRI)
重點七:去絕對值求極限 (https://youtu.be/PYzasrBZWWA)
重點八:高斯符號求極限 (https://youtu.be/EXKQQS17k2Y)
重點九:含無窮符號之極限 (https://youtu.be/RhKkx7DO_kM)
重點十之一:老大比較法 (上):多項式分式 (https://youtu.be/Wr6rkCa1Neo)
├ 精選範例 10-1-1 (https://youtu.be/wCksZl55O5Q)
└ 精選範例 10-1-2 👈 目前在這裡
重點十之二:老大比較法 (中):指數函數多項式 (https://youtu.be/FYGzcSw0U0s)
重點十之三:老大比較法 (下):叉叉接旨刺 log (https://youtu.be/YbvXCZmmff4)
重點十一:夾擠定理 (https://youtu.be/sTvtt4K85s0)
重點十二:lim_(x→0) sin(x) / x 專論 (https://youtu.be/sVohBWF-6ww)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
【數列與級數】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjcv6ChH_w0Y0WRkdbiP6xY)
【多變數函數的微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhoWH8tB00L6d3tWMV1l_o8)
【向量微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhVcuTj1IoCcYsRhJqoHN-y)
【附註】
1. 積分前篇和後篇自 2021 年 5 月起改成買張旭微積分上學期講義解鎖影片
2. 數列與級數以後的章節為下學期內容,為付費課程,購買後在張旭無限教室線上課程平台觀看
張旭微積分上學期講義購買頁面
👉 https://www.changhsumath.cc/calculusBook
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://www.changhsumath.cc/calculus2nd
【張旭無限教室線上課程平台】
2021 年年初,我建置了一個線上課程平台
除了放我的線上課程以外
也有其他與我合作的老師們的課程
👉 https://changhsumath.com
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
高斯定理數學 在 數學老師張旭 Youtube 的最佳貼文
【摘要】
這個範例將舉出幾個型如 sin(x) / x 但更複雜的極限問題,但在處理上還是運用補項湊出 sin(x) / x 的型式來取得極限
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsumath/reviews
【習題】
重點十二:https://drive.google.com/file/d/1D8R-DA-7epAyFnVqNqPrR0Kgjiy14NKO/view?usp=sharing
偶數題講解影片:https://www.youtube.com/playlist?list=PLKJhYfqCgNXhWs16FYbGx5HTe2QdPwBqD
簡答:https://www.facebook.com/groups/changhsumath666.calculus/files
微積分討論群:https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商學院學生觀看
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
重點一:極限的直觀定義 (https://youtu.be/hZT2fOcxSJw)
重點二:極限的嚴格定義 (https://youtu.be/gCkhy0aODZk)
重點三:一些基本函數的極限 (上集) (https://youtu.be/qoIOFz1D_W4)
重點四:極限運算定理 (四則運算篇) (https://youtu.be/d6PzP8ApFgk)
重點五:極限運算定理 (合成篇) (https://youtu.be/h2X2yyGyWHQ)
重點六:去零因子求極限 (https://youtu.be/vqoc59G-gRI)
重點七:去絕對值求極限 (https://youtu.be/PYzasrBZWWA)
重點八:高斯符號求極限 (https://youtu.be/EXKQQS17k2Y)
重點九:含無窮符號之極限 (https://youtu.be/RhKkx7DO_kM)
重點十之一:老大比較法 (上):多項式分式 (https://youtu.be/Wr6rkCa1Neo)
重點十之二:老大比較法 (中):指數函數多項式 (https://youtu.be/FYGzcSw0U0s)
重點十之三:老大比較法 (下):叉叉接旨刺 log (https://youtu.be/YbvXCZmmff4)
重點十一:夾擠定理 (https://youtu.be/sTvtt4K85s0)
重點十二:lim_(x→0) sin(x) / x 專論 (https://youtu.be/sVohBWF-6ww)
└ 精選範例 12-1 👈 目前在這裡
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
【數列與級數】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjcv6ChH_w0Y0WRkdbiP6xY)
【多變數函數的微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhoWH8tB00L6d3tWMV1l_o8)
【向量微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhVcuTj1IoCcYsRhJqoHN-y)
【附註】
1. 積分前篇和後篇自 2021 年 5 月起改成買張旭微積分上學期講義解鎖影片
2. 數列與級數以後的章節為下學期內容,為付費課程,購買後在張旭無限教室線上課程平台觀看
張旭微積分上學期講義購買頁面
👉 https://www.changhsumath.cc/calculusBook
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://www.changhsumath.cc/calculus2nd
【張旭無限教室線上課程平台】
2021 年年初,我建置了一個線上課程平台
除了放我的線上課程以外
也有其他與我合作的老師們的課程
👉 https://changhsumath.com
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
高斯定理數學 在 高斯定理求圖形數的問題- 數學板 - Dcard 的推薦與評價
想請問國小數列的問題,在書上是說利用高斯定理,可以解圖二第七題的答案,但我google後高斯定理,幾乎都是高中大學的課程,所以想問一下這個定理, ... ... <看更多>
高斯定理數學 在 MM07 丈量世界Measuring The World(2005) :高斯與等差數列 ... 的推薦與評價
高斯 究竟有多牛,看完之后怀疑人生!快进来膜拜吧! https://www.bilibili.com/video/BV1Jt411M7Ns [兔肉箘]:给出了110个 高斯定理 ?看 数学 王子 高斯 的 ... ... <看更多>