九月開學季,我梳理了給孩子們在課内學習、課外學習共七點建議。祝廣大學子們充分開展更多元的學習範式,提升自我的創新創造力!
我在《李開復給青少年的十二封信》書裏,也談過人工智能時代的教育,我覺得很適合在現在這個開學季再次分享給大家。比起應試考試中的分數,如果同學們具備“3C”的三大能力—— Curiosity(好奇心)、Critical thinking(批判式思維)、Creativity(創造力),未來更有可能實現自己的夢想。
■ 課內學習的4個建議:要充分利用好在學校裏上課的時間。
1. 要知其然,也要知其所以然
有同學問我:“怎樣學習知識,才能真正記住呢?每年考完試後,好像就把所有的知識還給老師了。”
我給這位同學的回答是:“我學懂的知識以及知道如何實踐的知識,我現在都還記得;在工作中常用的知識,我全部記得;我自己感興趣的知識,記憶更加清晰、準確,就算有不記得的,也可以快速推算出來;相反,那些靠死記硬背學到的知識,或者自己不感興趣的知識,我已經全忘掉了。”
也就是說,死記硬背只能過考試關,而不能獲取受益終生的知識。你們在學三角形面積定理時,一定都會背“底乘以高除以二”的公式。但是,你有沒有理解這個公式是如何推理出來的,為什麼三角形的面積是這樣計算的。記住這個公式和探索這個公式是如何推導出來的,學習的效果是不一樣的。有的同學學習化學,如果每天只是機械地背誦一些反應式,肯定會覺得枯燥無味,但如果掌握了每個反應式內在的規律,並能和現實中的化學現象聯繫起來,就會理解化學這門學科的意義所在,自然就會對這門學科產生興趣。
只有懂得了知識背後的道理,才能在遇到新的問題時舉一反三,才能在需要的時候,靈活地將自己掌握的知識付諸實踐。
2. 要多問問題
會提問也是一種能力,而且你也會因為提問而加深對問題的理解。
我的女兒在學習指數的時候,不理解指數是什麼,更不相信在真實生活中指數有什麼用處,就主動來問我。我用計算銀行存款的思路來指導她,比如存入 100 元,每年的利息是 10%,那麼 10 年後,你的存款是多少?
通過這樣的計算,她終於明白了,原來指數知識和日常生活息息相關。而她能得到對這個問題的認識,也是因為她主動提問獲得的。
多提一個問題,你就擁有一種多瞭解這個世界的可能性。只有不懂就問,才能真正學到有用的知識。
3. 要勤奮
能夠實現自己的夢想的人,一定是勤奮的。
去美國讀中學之前,我只學過半年英語,因此,語言障礙成為我面臨的最大難關。剛開始,同學和老師說的話,我幾乎一句也聽不懂,那種感覺非常痛苦。那“催眠”一般的語速,總讓我在課堂上打起瞌睡。有時候,聽到同學們因為老師的一句笑話笑得前仰後合,我才從夢中驚醒,但還是摸不著頭腦。天書一般的英文,開始讓我有些望而卻步,後來,我乾脆帶幾本中文的武俠小說到課上去讀,因為覺得怎麼聽也聽不懂,還不如看小說。
然而,我心裏又是暗暗憋了一股勁的。於是,我找了一大本英文單詞書來背,經常背到半夜,不會的就一次次地翻厚厚的中英對照詞典。不過,沒多久,我就發現這並不是學英文的最好方法。因為,即使當時記住了一個單詞,但是使用率不高的話,就會完全忘記。我終於悟到了,在沒有語境的情況下,背單詞是沒用的。
後來,我還是下定決心用多交流的方式來學習英文。下了課,我不再膽怯,站在同學中間聽他們說話。如果 5個詞當中有 4個聽懂了,只有一個聽不懂,我也會趕緊問,同學們會再用英文解釋一遍給我聽。回家以後,我會默默回憶我聽不懂的單詞,然後記下來。而上課的時候,遇到聽不懂的內容,我也勇敢舉手問老師,請求老師再說一遍。
我遇到了一位好老師,她甚至犧牲自己的午飯時間幫我一對一地補習英文,她複印了小學一年級的課文,每天拿來給我念。從簡單的課文起步,我們堅持了一年。在這一年裏,我的英文水平迅速提高。學校裏所有的老師還允許我享受“開卷考試”的特殊待遇,她們讓我把試卷帶回家,並且告訴我題目裏不認識的單詞可以查字典,但是不能看書找答案。我每次回到家都嚴格按照老師說的做,遇到題目裏不認識的單詞就去查字典,但是從來沒有去翻書找過答案。因為,我覺得這是老師給我的最大信任,我不能辜負這份信任。
通過種種渠道的學習,我的英文終於逐漸接近同齡人的水平了。一年以後,我完全可以聽懂老師講的話了,英文會話也沒有問題了。到了初中三年級,也就是到美國兩年之後,我寫的作文居然獲得了田納西州的前十名。我想,這和我年齡小,容易接受新的語言不無關係,但也和我勤奮的學習有關。
4. 要培養獨立思考的能力
我在人生的各個階段,都獲益於獨立思考的能力。甚至想不到的是,這種批判式的獨立思考的能力,“救”了我的命。
在我五十二歲生日前不久,我在一次體檢中被查出肚子裏有數十顆“腫瘤”,經過反復復查,我被醫生宣判得了第四期淋巴癌。在毫無防備的情況下,我突然感受到死神和自己離得那麼近;我氣餒、懊悔、內疚,但是,治療過程中的一件具有轉折意義的事件發生了。
我遇到了一個好醫生。我的主治醫生唐季祿給我打氣:“淋巴癌第四期真的沒那麼嚴重,它跟肝癌、肺癌第四期是不太一樣的。”他告訴我,網絡上有兩篇專門討論“濾泡性淋巴癌存活率的預估方式”的論文,如果我有興趣,可以找出來看看。我認真地研究了唐醫生推薦的那些學術文章,發現淋巴癌的分期方式已經有四十多年了,可以說過時且不精准了。如果說只看標準的分類,我因為腫瘤數太多,所以必須歸類為第四期。但是只看腫瘤數量是最準確的嗎?根據我研究的那幾篇論文,分期的目的就是預測存活概率和時間。那麼,最準確的預測方法就是尋找和我病情足夠相似的人,根據他們的不同因素,如年齡、症狀、血液指數、腫瘤數量及大小等 20多種,和他們的實際存活結局來理解哪些因素是最重要的,並且把這些因素整合起來。這樣的研究肯定要比四十多年前的粗分類來得准!
自己研究病情,就像是自己坐在副駕駛座上,可以隨時掌握路況。醫生的治病策略、用藥思維,你至少並不是茫然無知。我又拿出以前做學術的精神,把全部20幾個特徵與我的檢查結果相對照,發現我雖然屬於第四期,但整體狀況其實沒那麼悲觀。原來醫學上對所有淋巴癌的分期方式,至少對我的病情來說是不正確的,我的情況是較輕的。於是,我突然從“第四期癌症頂多幾個月”,變成“至少還有好幾年”可以活。倘若好好照顧自己,更有可能終身不再復發!這個發現有如一線曙光,從此之後,癌症所帶來的一切負面影響,就開始悄悄起了變化。
批判性地看待醫學上對淋巴癌的分類,通過獨立思考,獨立研究的方式來獲得對自己病情的準確判斷,讓我自己從精神上獲得了新生。
■ 課外學習的3個建議:課堂外的時間,我鼓勵同學們,去探索你們熱愛的東西,多實踐,多多鍛煉自己的創造力。
5. 要動手實踐
美國華盛頓兒童博物館的牆上寫了這樣一句格言:“我聽到的會忘掉,我看到的能記住,我做過的才真正明白。”
我記得小時候,我的父親曾讓我們幾個兄弟姐妹解答這樣一個問題:用 6 根火柴拼成 4 個大小一模一樣的正三角形。通過動手實踐,我們都找到了正確的答案。這樣的實踐讓我對相關的幾何和空間知識記憶深刻,也訓練了我使用新穎的思維解決問題的能力。
我在高中時參與美國的高中生創業嘗試課程,創辦自己的公司。我們當時的公司非常簡單,就是從當地的建材市場買來鋼材,然後利用週末時間到工廠裏加工這些鋼材,我們把鋼材切成很小的一塊塊圓環,然後在圓環上刻上簡單的雕花。在負責推廣的過程中,我們發現學生的家長並不需要這樣的圓環,最後產品幾乎是內部消化掉了。
這次的親身實踐,讓當時 15 歲的我意識到,真正好的產品,不是求人去買的,而是必須有市場需求。有了這樣的認識,我在第二次的創業嘗試中就會把市場需求作為我創辦的公司的方向。從需求出發,生產有需求的產品,牢記這樣的理念,第二次的創業嘗試獲得了成功。這些對於創辦公司的經驗,都是我從實踐中一點一滴積累起來的。
只有實踐,你才能知道你的想法是否可行。
6. 要追隨自己的興趣愛好
只有做自己真正喜歡做的事情,才能做到最好。
我在上大學時,一直以為自己喜歡法律,將來想做一名律師。可是上了幾門課後,我發現自己對此毫無興趣,於是跟家人商量轉系,數學是我的一個備選項。但是,當我加入了“數學天才班”後,發現我的數學突然從“最好的”變成“最差的”。我雖是田納西州的冠軍,但當我與來自加州或紐約的“數學天才”交手時,才發現自己真的技不如人。我深深地體會到那些數學天才是因為“數學之美”而對它癡迷的,而我並非如此。我一方面羡慕他們找到了最愛,一方面遺憾自己並不是真的數學天才,也不會為了它的美而癡迷,因為我不希望我的人生意義就是為了理解數學之美。
我想到了計算機,我在高中時就對計算機有濃厚的興趣,有一次,為了解答一個複雜的數學方程式,我寫了一個程式,然後把結果打印出來。當時因為機器運行的速度太慢,我沒有等到結果打印出來就回去了。週一回到學校,我才知道我們學校所有的打印紙都被我打光了。雖然挨了老師一通罵,但我的心裏有了一股欣喜,原來這個數學方程式有無數的解,我走後,程式一直在運行,計算機就一直在打印結果。
對計算機的興趣此時在我的心中醞釀,雖然當時計算機專業算是個默默無聞的專業。接下來,我選修了一門計算機編程課,幾個月的課上下來,我發現了自己在計算機方面的天賦。我和同學們一起做編程,他們還在畫流程圖,我就已經完成了所有的題目。考試的時候,我比別人交卷的時間幾乎早了一半,我不用特別準備,也能拿高分。
通過學習計算機 , 我有了一種前所未有的震撼:未來這種技術能夠思考嗎?它能夠讓人類更有效率嗎?計算機有一天會取代人腦嗎?我感受到了一種振奮,解決這樣的問題是我一生的意義所在。
我每天都像海綿一樣吸收著知識,在一門公認為是計算機專業最難通過的“可計算性和形式語言”課上,我考了 100 分,也就是A+ 的分數,創造了該系的一個紀錄。大三大四時我就開始和研究生一起選修碩士和博士課程,接手各式各樣的項目,在這些項目中,我嘗試著攻克一個又一個的難關。畢業後,我在計算機方面創造出了一些成果。
我覺得自己是幸運的,因為我在很年輕的時候,就找到了自己熱愛的事情,並且願意為之付出一生的努力。
7. 要多培養自己的創造力
我的中學是在美國的橡樹嶺讀的,當時的感受就是,學校的功課很輕鬆,每天的家庭作業很少,但是每天有很多稀奇古怪的項目。比如,當時歷史課教到美國印第安人的時候,不是用課本告訴你發生了什麼,而是讓一個團隊寫一個話劇,或者是進行關於移民者和印第安人的辯論。
這些項目都沒有一個標準的答案,但會引導我們從不同的角度看問題,但我們的創造力和想像力,可以在這些稀奇古怪的題目中得到鍛煉。
後來,我回到北京創辦微軟中國研究院面試時,對前來面試的學生也注重的是對他們思維方式的考驗,我們向面試者提出了這樣的問題:
o 為什麼下水道的蓋子是圓形的?
o 估計一下北京一共有多少個加油站。
o 你和你的導師如果發生分歧怎麼辦?
o 給你一個非常困難的問題,你想怎樣去解決它?
o 兩條不規則的繩子,每條繩子的燃燒時間為 1小時,請在 45分鐘燒完兩條繩子。
這些題目雖然聽上去很“怪”,但我們出題的本質也不一定要聽到正確答案,而是要從回答問題的思路中聽到面試者的思維方法。
孩子們,比起試卷上的分數,我認為你們底層的思維能力,會是更珍貴的能力。你在學習每一門科目時,鍛煉出來的能力是未來最能幫助你們的事情。就像你學了代數,也許不會去研究數學,但是這對鍛煉你的思維有幫助;你學了英文,不一定會出國,但是英文可以在瞭解世界最前沿的文獻、在有效交流方面幫助你;你學了畫畫,不一定成為畫家,但是你在學習畫畫的過程中鍛煉的觀察力、空間力、想像力會對你有幫助。
過去,我們對教育成功的衡量標準是學生能不能記得被教的東西。但是未來,教育的精華體現在即使你忘記了所有你學的東西,你還具備思維方式、智慧和能力。
當你已經忘記了歷史事件發生的年代,你還是知道歷史帶給我們的人類的智慧和教訓;當你已經不會編程了,你還是有編程帶給你的邏輯思維;當你已經不會背莎士比亞的詩了,你依然懂得文學的美,這些才是教育的精華。
同時也有3部Youtube影片,追蹤數超過68萬的網紅ブレイクスルー佐々木,也在其Youtube影片中提到,提供:クァンダ 分からない問題を一回の写真撮影で 解説を検索! 人工知能数学問題解説検索! ※一部、問題と解答に誤りがありましたので、訂正させて頂きます。 正解は下記となります。 問(1) tan90° 定義出来ない為、解答なし 問(2) sin30° = 1/2 問(3) cos75° = ...
高 次 方程式 計算機 在 Amy Ng 吳芷盈 Facebook 的最佳解答
【機率】
要數數學最沒用的概念,機率應該是其中之一。計算再準確,也算不來所有意料之外,計不上命運的緣分運氣,所以答案大多是得物無所用。可討厭數學的我,中學時偏偏就為了考入精英班,修讀延伸數學的微積分與統計,被迫受機率折磨。總是以自身經歷來推翻所學的我,就曾經嘗試善用統計學,在一次測驗中不夠時間做多項選擇題的時候,按照網上資料歸納所得,將五題答案全部填選最大機會出現的C。結果老師心儀的字母原來是B,還喜歡得把五題答案全都設定為B。揭發了我亂做測驗之餘,說她未遇過這麼有趣的學生,要我把測驗重做一次,這至今還是師生間津津樂道的故事。
機率不可靠,但人們總覺得數字可以給人一種安慰。只要成功的概率夠大,彷彿就等同自己也可成為大多數,這大概是最浪費人生的一場誤解。因為大多數名校畢業的人都有康莊之途,所以不屬於這個圈子的你就自以為落後於人;因為大多數專業學系畢業的人都能找到穩定工作,所以你就自以為一定可以勝任相關職位。人一生總是活在這樣的幻像裡,也沒有想過機率再高也不一定涵蓋自己,概率再低也會有其例外。曾經也有過類似的幻想,最後才驚覺即使身在所謂成功的圈子,並不等同同樣的方程式必然適用。及早發現自己需要甚麼、想要甚麼,才會找到適合自己的那條路。
報讀哈佛教育學院的時候,也曾經反覆鑽研機率。遞交申請的前後,都在網上細讀歷屆成功獲錄取者的背景。每個成功申請者都曾有正式的教學經驗,而且歷年錄取的八九百個學生中,港人人數不是一就是零。結論是,機率接近零。印象深刻的是,等待結果的那個失眠的夜晚,還特地寫了一句「nothing is a coincidence」,心裡覺得自己沒有同樣的條件便註定失敗。
可世事偏偏就不受機率所限,there are more coincidences than you can ever imagine。因此比起計算機率,現在的我更喜歡改寫機率。即使失敗,也不過就如當年那個自己,一笑置之,然後重來一次。可是只要成功,你就可以說服別人,數字不能標籤你的人生,只要夠堅定,你終能成為那萬中無一的唯一。我相信。
#我的寫作日常 #041
#總覺得數學不好是我活得快樂的原因之一
#其實很多事情只要相信就夠了
#我竟然搵得返份卷應唔應該tag返數學老師哈哈哈哈哈
#澄清一點我最後係考左個五的都不錯啦哈哈
高 次 方程式 計算機 在 新思惟國際 Facebook 的最讚貼文
▌ 解救我的生統 phobia,新思惟是成功做到了!
「對於學生時代所學的生物統計課程,還有多少印象?」
我的答案是,背不完的方程式、查到眼花的函數表,加上很難用的工程計算機。但這些實際上有派上用場嗎?沒有,學校的課程只是把生統塑造成高不可攀的模樣,打擊初學者的信心。
打個比方吧,當你發現前方失火想要用滅火器滅火,學校教的是滅火器有幾種分類,裡面的成分是什麼(請背起來)?成分百分比各有多少(請背起來)?如何操作?最後考試時只准許你帶的一隻最迷你的滅火器(工程計算機)上場。
試問,真正要做研究跑統計的時候,誰會拿出工程計算機啊。
如何利用幾個小時的時間解救有生統 phobia 的我,我想新思惟是成功做到了。透過巧妙的課程安排,用自己的電腦跑出可以直接投稿的統計圖表,真的很療癒。在這裡講究的是實戰,從選擇哪個軟體開始教起,非常適合入門者,加上使用介面簡單,讓人想趕快跑跑自己的資料。
▌ 這堂課值得嗎?
上這堂課除了報名費,還需要南來北往的交通,以及本來就很稀少的完整週休假日,值得嗎?當然值得。
如果像我這種一篇都寫不出來的人來上,感覺真的是站在巨人的肩膀上,這裡能快速獲取其他人也許要好幾年才能累積的經驗,時間對我們來說,才是最寶貴的資產。
🚩 零基礎不怕,PGY 也能輕鬆上手的研究入門首選。
➠ 2020 / 5 / 9(六)醫學論文與寫作工作坊
➠ https://mepa2014.innovarad.tw/event/
➠ 立即預約突飛猛進的成長,將寫作到投稿的各項雜症,一次解決到位。
高 次 方程式 計算機 在 ブレイクスルー佐々木 Youtube 的精選貼文
提供:クァンダ
分からない問題を一回の写真撮影で
解説を検索!
人工知能数学問題解説検索!
※一部、問題と解答に誤りがありましたので、訂正させて頂きます。
正解は下記となります。
問(1) tan90° 定義出来ない為、解答なし
問(2) sin30° = 1/2
問(3) cos75° = (√6-√2)/4
🔥クァンダ : 5秒で数学解説検索
💎Google Play Store 教育アプリ人気ランキング1位
🏅iOS App Store 教育無料アプリランキング1位
ㅁ 5秒解説検索
ㅁ 数式計算機 : 2次方程式も人工知能で
ㅁ 分かるまで、名門大生が1:1リアルタイムで質問解答
★アンドロイド★↓
http://bit.ly/2HSzIx5
★iOS★↓
http://bit.ly/2HV6jCB
★公式 Twitter★↓
https://twitter.com/QandaJ
—————————————————————————————
◆Twitterアカウントのフォローよろしくお願いします!
https://twitter.com/BreakthroughSSK
◆企画立案コーナー(実際に採用されるかもよ!)
https://goo.gl/forms/B5wZv4SMKuPsp4eJ2
◆よく使用させていただくBGMサイト
MusMus http://musmus.main.jp/
DOVA-SYNDROME http://dova-s.jp/
魔王魂
素材提供 PIXTA
◆プレゼントはこちらから🎁
〒106-6137
東京都港区六本木 6-10-1 六本木ヒルズ森タワー 37階
UUUM株式会社 ブレイクスルー佐々木宛
◆問い合わせ
[email protected]
—————————————————————————————
【自己紹介】
こんにちは!生粋のUUUM系YouTuberのブレイクスルー佐々木です!
主に、理系から下ネタまで幅広いジャンルの動画をあげています。たまにド下ネタ動画を投稿して、UUUMに冷や汗をかかせることがあります。
基本週3~4日投稿になってしまうのですが、その分、動画1本1本のクオリティには非常にこだわっております。
30%ぐらいの確率で大物になりますので、チャンネル登録して見守ってくださると嬉しいです!
よろしくお願いします!
—————————————————————————————
【メンバー紹介】
◆ブレイクスルー佐々木
くだらな過ぎる発言や発想力に定評がある理系の人。
◆野生のピカチュウ
ブレイクスルー佐々木チャンネルの動画編集長。
その編集能力はリスナーからも高い評価を得ている。
—————————————————————————————
高 次 方程式 計算機 在 ゆなちゃんねる Youtube 的最佳貼文
※ 人工知能で検索した問題の解説と似たような問題が同時にでてきて参考に出来ます!
こちらの動画は株式会社MATHPRESSOとのタイアップです。
分からない問題を一回の写真撮影で
解説を検索!
人工知能数学問題解説検索!
🔥クァンダ : 5秒で数学解説検索
💎Google Play Store 教育アプリ人気ランキング1位
🏅iOS App Store 教育無料アプリランキング1位
ㅁ 5秒解説検索
ㅁ 数式計算機 : 2次方程式も人工知能で
ㅁ 分かるまで、名門大生が1:1リアルタイムで質問解答
★アンドロイド★↓
http://bit.ly/2HSzIx5
★iOS★↓
http://bit.ly/2HV6jCB
★公式 Twitter★↓
https://twitter.com/QandaJ
ど〜も〜ゆなです! ピンポンっ!
高評価、チャンネル登録よろしくお願いします♡
MelTVというチャンネルにも出演してます!
MelTV▶︎https://www.youtube.com/watch?v=s5V8m-rCFh8
▶ゆなのTwitter
https://twitter.com/_yunachannel
▶ゆなのLINE LIVE
https://live.line.me/channels/71120
※当チャンネルはVaz inc が管理しています
▶VAZ公式HP
http://vaz.tokyo/
高 次 方程式 計算機 在 賭Sir【杜氏數學】HermanToMath Youtube 的最佳貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
賭場VS賭波VS賭馬,如何預測賽果?
----------
Subtitle:
天有不測之風雲,何以天文台能夠預測天氣?
----------
Script:
賭場、賭波和賭馬,形式上非常不同:
賭局 賠率 機率
賭場遊戲 己知 己知
足球博彩 己知 未知
賽馬博彩 未知 未知
由於形式不同,戰術亦截然不同。但戰術不同,目標卻始終如一:「正EV」。只要EV是正數,賭博便佔優。重溫一次EV的計算方法:
EV = 淨贏注 × 贏錢機率 - 淨輸注 × 輸錢機率
換言之,賭場遊戲的賠率固定、機率固定,因此EV都是固定,而且一般來說都是固定的負數(因為對賭場來說便是正數)。對賭客來說,除非遇上賭場犯錯,例如推出新遊戲,規則上容許賭客獲得正EV#,否則於賭場遊戲長賭必敗無疑。
#《爽爆:全職賭徒鑽賭場漏洞 月贏80萬 》
http://hk.apple.nextmedia.com/news/art/20121017/18042618
至於足球博彩,雖然是固定賠率制,但由於足球比賽變化莫測,不似賭場遊戲純粹訴諸物理力學,因此機率是未知之數,自然EV也是未知之數。只要有一定方法,便有可能取得正EV。
或許你會問:既然足球比賽變化莫測,一個不慎擺烏龍、一個不智領紅牌、一個球證誤判越位入球等,都會影響賽果,試問又怎能夠計算呢?
這個問題就等如天有不測之風雲,天文台為何能夠預測天氣呢?當然間中亦有錯判,但雖不中亦不遠矣,這就是數學的力量。其實博彩公司訂立賠率的時候,都會先以數學計算賽果機率,然後輕微調低作抽水。由此可見,只要比博彩公司計算機率計算得更準確,便能夠於賭局中佔有上風。
舉個例,朋友和你在街頭足球場看見兩隊業餘球隊比賽,朋友見一隊年輕力壯,另一隊白髮蒼蒼,於是開盤:「年輕隊1賠0.8、和局1賠2.1、元老隊1賠3.1」,這個時候,你發現元老隊球員原來是前甲組職業球員,年輕隊則是自己兒子的球隊,而你知道自己的兒子和他的朋友是乒乓球隊友,根本不懂得踢足球,因此,你預算元老隊的勝率遠超年輕隊。明顯地,這個賭局是你佔了上風。
換言之,這是一場資訊(Information)戰,擁有更多資訊的佔優。為什麼?因為資訊較多的一方,更能較準確地計算賽局機率(這也是馬評家晨早起床看晨操的目的,獲取一般馬迷不知道的資訊)。於上述例子,雖然不涉及數學運算,但仍算是一種粗略估算。當然,面對博彩公司,粗略估算是不足夠的,你需要比博彩公司更精確的機率計算,而方法就是:建立一個數學模型(Mathematical Model)。
提供重要資訊
計算預測結果
你先從現實世界搜集重要資訊,例如對賽兩隊的近績、對賽往績、預計陣容等,而對賽果影響力較小的,可選擇性地抽取,例如天氣溫度、領隊教練、花邊新聞等。然後,將這些資訊輸入到電腦程式,並由電腦進行運算,得出答案後,把電腦程式輸出的賽果,視之為對現實世界的預測賽果。程序大致如此,天文台預測天氣也是透過數學建模(Mathematical Modeling),量化重要的氣候現象,來預測未來天氣。
然而,電腦程式是如何使用現實資訊的呢?首先預設一些公式,然後匯入大量球賽歷史資訊,例如上述的近績、對賽往績、甚至天氣溫度等,從而利用公式計算預測賽果,將它與真實賽果比較,便可得知每一條公式的預測準繩度,繼而從中選出預測力最高的公式,加以使用,計算EV。
最常見的疑問是:「公式的準繩度源於球賽歷史資訊,包括真實賽果,準繩度自然必被高估,試問對比真實賽果又有什麼意思?」
這個問題可以利用一個名叫回溯測試(Backtesting)的小聰明手法,匯入資訊時,只匯入一部份,留下剩餘的部份歷史賽事當作未來賽事,執行公式模擬投注。
舉例說,你找了1000場相關賽事,你可匯入首900場,來挑選公式,然後用尾100場作模擬投注,計算出使用公式的EV。
賽馬博彩也是透過數學建模,你除了需要計算機率之外,你也要模擬最後賠率。因為賽馬博彩是實行彩池制(Pari Mutuel,又稱同注分彩法),賠率會因應投注額的分佈而時刻調整。假設你投注的時候,一號馬是1賠10,臨開閘的時候可以變了1賠3,到最後派彩可以變了1賠6,而你最後獲得的賠率,就是根據最後派彩,而不是你投注的時候。
由此可見,如使用數學建模,賭馬比賭波容易獲得正EV。主要原因如下:
賽馬是賭客與賭客之間的對賭。實施彩池制,博彩公司抽取投注額的手續費獲利,無論賽果如何,博彩公司已經賺了,派彩只是用輸家的注碼賠給贏家。只要有大量非理性的賭客,賭局佔優的機率便會較高,就好像到麻雀館打麻雀,遇著三位菜鳥,贏面自然較高。
相反,足球博彩是固定賠率制,是莊家和賭客直接對賭,莊家自然費盡工夫調整盤口,為公司獲得正EV,博彩公司正EV,即是賭客負EV。要從足球博彩中使用數學模型取勝,就得比博彩公司計算得更精確才有機會成功。
實際操作上,數學模型的構造當然比以上描述複雜得多,例如考慮的因素、各個因素的比重、賽事的數量,甚至注碼大小等,都絕不簡單。然而,原理大致上就是如此。
這一堂不教任何數學建模的方法,因為所需要的數學水平起碼要有大學程度,如想擊敗賭場,開始學習數學吧,有心不怕遲,只要沒有了考試的壓力,學習數學其實很愉快,也很輕鬆,或許最後你做不了賭神,卻成了數學家呢!
就算不打算學習數學,也希望你明白背後的原理,不致於大庭廣眾之下獻醜,不會再說由於隨機因此無法預測,而別人提起數學模型的時候,你起碼聽得明白。
天氣預測的科學發展已成熟多年,人類掌控隨機事件的能力已遠超一般人所想。天文台雖然無法完美預測每一秒的天氣變化,但大概準確,已造福人群;同樣地,賭局預測,雖然不會場場中,但只要大概準確,使贏的多過輸的,已足夠使賭客獲利。數學並非萬能,但只要適當地使用,絕對是強大的武器。
Summary
賭場遊戲的賠率和機率都是固定。
足球博彩實行固定賠率制(Fixed-odds betting),賠率固定,但機率不知。
賽馬博彩實行彩池制,賠率不定,機率亦不知。
賽果預測的原理,與天氣預測的原理大致相同。
將現實世界重要資訊,匯入數學模型計算,用結果預測現實世界賽果。
把部份歷史賽事當作未來賽事,用以驗證數學程式的準繩度。
天氣預測無須分秒不差,賭局預測亦無須場場中,只要正EV就可以。
Terminology
資訊(Information)
數學模型(Mathematical Model)
數學建模(Mathematical Modeling)
回溯測試(Backtesting)
彩池制(Pari Mutuel)
固定賠率制(Fixed-odds betting)
-----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
精選系列節錄:
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo