譚新強:Galileo的教誨:人類非宇宙中心點
文章日期:2021年5月21日
【明報專訊】人類非常自以為是,一切以自己為中心的動物。自古以來,不止大部分人都以為大地是平或者是方的,他們更以為天上的星星、月亮和太陽,都是圍繞着我們而運轉的。當伽利略(Galileo Galilei)以望遠鏡觀察得來科學證據,支持哥白尼(Nicolaus Copernicus)的太陽中心論,他就被教廷批鬥和逼害了20多年之久。
即使現代人也有同樣自以為是的主觀願望。不少人偏見地以為近數十的所謂新發明,例如互聯網、手機、AI、機械人和加密貨幣等,都必然是人類史上最偉大和最重要發明。更有不少人甚至相信所謂加速回報定律(Law of Accelerating Returns),認為重要科技發明的速度不斷提升,很快就將達到人網合一的所謂「奇點」(Singularity)!
客觀點來看,這些科技發展雖重要,尤其互聯網和手機,令到日常生活更方便和豐富,但怎可能比火、蒸氣機、電力、電話、汽車和飛機等更重要?有人曾問過李光耀,什麼是偉大發明?他的答案是對新加坡而言,最重要的發明是空調!他認為在熱帶地區,如沒有空調,工作效率非常低,經濟發展必更困難。你可能以為李光耀此言是開玩笑,小小一台冷氣機,怎可能那麼偉大?但事實擺在眼前,新加坡是熱帶國家中,極少數(差不多唯一)能達到發達國家水平的國家之一,成功原素當然不止空調這麼簡單,但他立國不久即決定盡快在所有政府辦公室裝置空調,肯定對提升政府效率有極大幫助。
近20年科技無助提升生產效率
若以生產效率的趨勢來判斷近20年科技發展的成效和重要性,不幸客觀結論就必然是頗為失望,甚至驚訝。因為不論美國或中國,過去20年的勞動生產率(labour productivity)增長都不斷放緩(見圖1及圖2),就如數以萬億美元計的IT投資,每人手中一台超級電腦,都提升不了我們的生產效率。更不需遑論AI結合機械人,再加5G,所有工廠都應變得更自動化,需要的工人極少,理論上人均生產效率必定急速提升。
這麼多「超偉大」發明,怎去解釋生產效率增長率不加速反放緩的重大謎團?我認為可探討3個可能性。
(1)從1970年代開始,個人電腦(PC)開始崛起和普及,企業投入大量資源,期望生產力效率大幅提升。但長近20年的投資期,效果一直是失望的,在互聯網普及前,大部分電腦幾乎可算是獨立的,主要用途只包括文書處理(word processing)、電子試算表(spreadsheet)和簡單資料庫(database)等,即使有通訊功能,也只限於速度極慢、撥號連線的modem。在這個單打獨鬥的環境下,大部分PC亦是一台昂貴的高級打字機,對生產力提升當然有限。後來隨着互聯網崛起、寬頻普及,企業開始看得到大量投資IT的回報。當然互聯網的發展,提供了創立大量新企業的機會(但即使如此,上世紀七十年代至今的生產力增長也一直放緩)。
同一道理,過去30年的新科技發展,將有重新提升生產力效率的一天,可能只是時辰未到。我贊同有此可能性,但到底現代科技,缺乏什麼催化劑,防止它們完全體現潛能?我也沒有準確答案,部分可能是投放的量未足夠,例如5G,大家一直期待網絡速度馬上提升10倍以上至Gbps級別,但事實上在美國和中國的用戶體驗極差,平均速度提升50%不到,某些情况和地區,甚至比4G更慢,亦較受障礙物如牆壁阻礙接收。應用方面更缺乏「killer apps」,據說在中國的流行5G App是Speedtest,就是用來測試通訊速度!現時平均每個基站服務約7000用户,當然寄望繼續增加密度,到了某個水平,希望能較成功體現5G功能。除此,高頻率的mmWave網絡仍在起步階段,高頻率才可真正大幅提升速度,但不幸物理上,mmWave穿透力更差,要實現IoT夢想,實時遙控高速機器,進行精細手術和應用於交通系統等,仍面對極大挑戰。
(2)人均生產效率增長放緩,有可能是定義和數據準確度的問題。會否是不可以金錢來量度近代科技發展所帶來的所有好處,除經濟增長外,亦有助改善人類健康、延長壽命,以及提升快樂感?有可能,事實上在過去200多年,全球人類壽命的確上升很多,從不到30歲升至現在的70多歲;但大部分應該是公共衛生的改善,尤其自來水的普及,農業進步導致營養改良,以及接生技術和環境改善,大幅減低嬰兒夭折率等,而非來自先進癌症治療法或基因工程技術。當然,近年英美的平均壽命更出現下跌趨勢。快樂的定義更抽象,跟科技發展更沒有一個必然關係,去多幾次日本就一定開心啲?著名人類學家Steven Pinker認為,原始的hunter-gatherers,以狩獵為生,不用花太多時間工作和計劃生活,平均快樂度反而比生活較穩定和富庶的農業社會高很多。原因是農業需要長達一年的工作計劃、播種、灌溉、收割和儲糧等等,全年忙碌,亦需全年憂慮天氣和瘟疫等。現代人更惨,不止需要計劃一年,未上幼稚園,已需要開始計劃人生,每年每月每日都有無窮無盡的所謂工作、責任和煩惱。
有人企圖解釋,可能分母也有問題。人均生產力增長減速,或者是因為現代經濟高度自動化,需要工作的人愈來愈少,即是失業,underemployment和不需工作的人愈來愈多,所以人均生產效率就被拉低了。這個解釋有兩個問題,首先在這次COVID大流行前,以美國為例,失業率跌至3.5%的50年新低,何來工作人數在減少?近月隨着美國疫情減退,失業率又再急速下降,所以此論點不成立。
有人指出,雖然表面失業率低,但有不少人不再尋找長工,只做點「零工」(gig),或只領救濟,所以人均生產效率被拉低。我沒有深入研究過,但我懷疑近年underemployment的情况,是否真的比以前嚴重。我的印象是從前較以農業為重的社會,鄉下的「閒人」更多,城市化才是提升人均生產力的最重要元素。
總括來說,我承認經濟數據未必能夠完全反映科技進步對人類的影響,但仍不可以此為解釋生產效率增長放緩的藉口。
人類發展漸近兩科學極限
(3)我認為最重要的解釋是人類發展已逐漸走近兩個科學上的極限。第一個是地球資源所能提供的可延續發展極限。人類發展,從古至今,尤其從工業革命開始,都可說是建築在耗用地球資源身上,尤其倚賴化石能源,最初是最髒的煤炭,後來是更好用但更有限的石油,再加上較清潔但難儲存運輸的天然氣。近年我們當然開始發現化石能源的碳排放,帶來嚴重氣候變化問題,如不能在極有限時間內解決,足可導致一次全球大規模動植物滅絕災難!
樂觀來看,這個危機當然也提供很多發展再生能源、電動車輛(electric vehicle, EV)、儲能、碳捕獲(carbon capture),以至「地球工程」(geoengineering)技術的機會。但不能否認的是地球本身是個充滿有機化學(organic chemistry)的環境,最方便的能源必然是與炭相關的,石油的能源密度是任何電池技術的20倍以上。按《巴黎氣候協議》的計劃,人類必須在2050年前達到碳中和,談何容易?去年因疫情,全球碳排放確下降了約6.5%,接近但仍不到每年遞減7%的目標,今年美、中等經濟重開,有可能達標嗎?
另一個更根本的是物理的極限。歷史上最偉大的科學突破,毫無疑問是二十世紀初,愛恩斯坦的狹義和廣義相對論,和稍後由玻爾(Niels Bohr)、海森堡(Werner Heisenberg)和薛丁格(Erwin Schrodinger)等人所發展的量子力學(quantum mechanics)。兩套理論非常偉大,亦有極大實用性,核能和核武正是它們的結合,是禍是福,見仁見智。但不幸過去60年,理論物理已可說碰到了堅硬牆壁,相對論與量子力學有非常根本性,甚至哲學性矛盾,聰明如愛恩斯坦,窮人生最後30年努力,也無法解決此問題。後人想出很多充滿創意的理論,例如超弦理論(Superstring Theory),但全都是紙上談兵,毫無實驗證明,所以於事無補。
物理極限對應用科技和經濟發展有很大影響。整個IT革命都是由半導體技術進步所推進。最有名的摩爾定律(Moore's Law),雖並非一條真正永恒不變的物理定律,但在過去50年,一直是芯片發展的一個指標。事實是每一代的芯片發展,雖仍在進步,但速度早已放緩,最初摩爾定律預期每9至I2個月,芯片密度即可翻一倍,近年已放緩至兩年以上。強如過去的老大英特爾(Intel),已停滯於14nm兩年以上,只有台積電和三星能繼續推前,能成功生產7nm芯片。即使台積電等能如期做到2nm,無疑必將接近物理極限,再縮小必將帶出各種量子世界的奇怪現象如「穿隧效應」(tunneling effect),極難控制芯片性能。
在應用層面上,影響也必極大。單是AI無人駕駛,已是個極重要的科技夢想,亦是Tesla股價的一個重要支柱。馬斯克(Elon Musk)教主是個頂級銷售員,他一直不斷告訴「信徒」無人駕駛是個相對簡單的ANI(Artificial Narrow Intelligence)應用,只需GPU或ASIC夠快,加上視覺數據,必可在短期內成功。按馬斯克的說法,年輕一代不需要學駕駛汽車,法律甚至將禁止人類開車,所有汽車變成AI無人駕駛的EV。
無人駕駛為極複雜AI難題
事實上,無人駕駛是個極複雜的AI難題,最近連馬斯克開始承認困難比原先想像中高很多。不止Tesla,大部分其他公司都碰到同樣問題,不少甚至已放棄。Uber和Lyft都計劃出售無人駕駛部門,Alphabet的Waymo,近日CEO和CFO等多位高層相繼辭職。德國各大汽車廠近日都推出質量非常不錯的EV,但並無太多AI功能。
我一向認為無人駕駛沒那麼簡單,應屬於AGI(Artificial General Intelligence)問題,即需要所謂common sense。人腦當然遠比電腦慢,但複雜度遠比芯片高,人腦neurons(神經元)數量超過1000億,synapses(突觸)數量更超過125萬億,更加是三維物體,連形狀和組織都對人腦的思考、性格和整個意識(conciousness)非常關鍵,遠比現時最先進二維為主,7nm GPU的540億原子粒多和複雜。即使未來用到2nm技術,能做出人類common sense的機會仍很低。不少AI專家認為,AGI需要whole brain simulation,或甚至不可以矽為基礎原料,改以用所謂wet ware,不知是否想以基因工程技術,在試管中培植出一個以碳為基礎原料的有機AI系統?聽起來,比Frankenstein(科學怪人)更恐怖!
我沒有答案,只想提醒大家不要過度自以為是,人類始終是渺小的,我們對宇宙的認知非常有限!
(中環資產擁有Tesla、Uber、Alphabet、台積電及三星財務權益)
中環資產投資行政總裁
[譚新強 中環新譚]
https://www.mpfinance.com/fin/columnist3.php?col=1463481132098
同時也有3部Youtube影片,追蹤數超過15萬的網紅關關關兒,也在其Youtube影片中提到,長久以來我需要製作各種週邊及圖素 偶爾也會剪輯影片 但由於電腦常不順且當機 導致製作過程也是非常崎嶇且艱辛 製作時間就也被拉長 非常的困擾 甚至曾經在走鐘獎上台感言就是想要一台新電腦! 在內心的吶喊及觀眾不斷地敲碗 乾爹終於聽到大家的聲音了! 【AGI 亞奇雷 x 安得烈慈善協會:讓孩子們存下聖...
「agi電腦」的推薦目錄:
- 關於agi電腦 在 Eddie Tam 譚新強 Facebook 的最佳解答
- 關於agi電腦 在 關關關兒 Facebook 的最讚貼文
- 關於agi電腦 在 關關關兒 Facebook 的最佳貼文
- 關於agi電腦 在 關關關兒 Youtube 的最讚貼文
- 關於agi電腦 在 ValorGears Youtube 的精選貼文
- 關於agi電腦 在 ValorGears Youtube 的最讚貼文
- 關於agi電腦 在 [新聞] AI聊天機器人ChatGPT引爆著作侵權疑雲? - 看板Tech_Job 的評價
- 關於agi電腦 在 AGI 亞奇雷 - Facebook 的評價
- 關於agi電腦 在 Best choice for new generation computers新世代電腦首選固態 ... 的評價
- 關於agi電腦 在 進到SSD 首頁,幾乎是AGI SSD的文章,這是哪招? - Mobile01 的評價
agi電腦 在 關關關兒 Facebook 的最讚貼文
#新電腦好香
沒想到在2020年底我居然出影片了!
更厲害的是
居然有廠商敢找我這個幾乎是年更影片的人
感謝乾爹 AGI @agilegearinternational
😭😭😭
-
現在有了新電腦
讓我可以更輕鬆的做圖和剪片!
希望之後可以有更多的影片可以讓大家看到!
而且現在電腦升等了!
等我之後網路搞好說不定就可以開直播啦(?)
哈哈哈哈哈哈
-
【AGI 亞奇雷 x 安得烈慈善協會:讓孩子們存下聖誕的幸福】
即日起~12/31於AGI電商平台單筆消費滿$1500,AGI就會提供原子筆隨身碟給弱勢的孩子們,與孩子們一同開心過聖誕。
agi電腦 在 關關關兒 Facebook 的最佳貼文
長久以來大家都知道我需要製作週邊及各種圖素
偶爾也會剪輯影片
但由於電腦常不順且當機
導致製作過程也是非常崎嶇且艱辛
製作時間就也被拉長
非常的困擾
所以曾經在走鐘獎上台感言就是想要一台新電腦!
在觀眾不斷地敲碗及內心的吶喊
乾爹終於聽到大家的聲音了!
【 AGI 亞奇雷 x 安得烈慈善協會:讓孩子們存下聖誕的幸福】
即日起~12/31於AGI電商平台(yahoo購物中心、momo購物網、pchome24h)單筆消費滿$1500,AGI就會提供原子筆隨身碟給弱勢的孩子們,與孩子們一同開心過聖誕。
活動連結 ➤ https://www.agi-gear.com/news_detail/19.htm
agi電腦 在 關關關兒 Youtube 的最讚貼文
長久以來我需要製作各種週邊及圖素
偶爾也會剪輯影片
但由於電腦常不順且當機
導致製作過程也是非常崎嶇且艱辛
製作時間就也被拉長
非常的困擾
甚至曾經在走鐘獎上台感言就是想要一台新電腦!
在內心的吶喊及觀眾不斷地敲碗
乾爹終於聽到大家的聲音了!
【AGI 亞奇雷 x 安得烈慈善協會:讓孩子們存下聖誕的幸福】
即日起~12/31於AGI電商平台(yahoo購物中心、momo購物網、pchome24h)單筆消費滿$1500,AGI就會提供原子筆隨身碟給弱勢的孩子們,與孩子們一同開心過聖誕。
活動連結 ➤ https://www.agi-gear.com/news_detail/19.htm
#AGI
#亞奇雷
#組電腦
❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣
𝙞𝙣𝙨𝙩𝙖𝙜𝙧𝙖𝙢 ➤ https://www.instagram.com/ijk_0211/
𝙁𝙖𝙘𝙚𝙗𝙤𝙤𝙠➤ https://www.facebook.com/ijk0211/
❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣❈✣
agi電腦 在 ValorGears Youtube 的精選貼文
Surfshark VPN 優惠 https://surfshark.deals/valorgears
Anlander 網店 : https://n.anlander.com/ilovevg
$600 減 $50 優惠代碼 (ilovevg)
飛馬砌機 : https://shop.pegasus.hk
砌機減 $220 優惠代碼(vg)
歡迎各公司提供優惠
17:06 type c mon
30:49 sandisk ultra microsd
34:07 agi usb 3.2 gan2 ssd
37:32 lexar sdhc uhs 2
38:26 agi microSD
39:16 acer PREDATOR XB3
41:54 acer xz242qp
43:51 acer vg252qp
45:10 belkin 3 in 1 wireless charger
46:11 logitech flight rudder pedals
46:32 cooler master mf120 prismatic
1:17:50 rtx 30XX
花生
完
讚好 FB 專頁:https://fb.me/ValorGears
加入 FB 群組:https://www.facebook.com/groups/VGPC9uper/
全新 VG 網站:https://www.valorgears.com
==============救救小VanVan課金贊助熱線==============
成為Youtube 會員 : https://www.youtube.com/channel/UC9jW6WpsAPgh-9HqDTvkFzg/join
Patreon 月費贊助 : https://www.patreon.com/valorgears
Paypal 贊助 : https://www.paypal.me/VansonChan
轉數快 贊助 : 5576129
Pay Me 贊助 : https://bit.ly/39dCpEF
#RTX3060Ti #RX6800 #LG
agi電腦 在 ValorGears Youtube 的最讚貼文
隻 980 Pro 唔好問幾多錢, 我到呢刻都未到 sosad
Surfshark VPN https://surfshark.deals/valorgears
17折再加三個月優惠代碼 (ValorGears)
Anlander 網店 : https://n.anlander.com/ilovevg
$600 減 $50 優惠代碼 (ilovevg)
Anlander Remax PD 尿袋優惠
https://anlander.com/collections/deals/products/remax-rpp-151-power-bank-10000mah-outlet?utm_source=valorgear&utm_medium=discountcode&utm_campaign=vgonly&fbclid=IwAR1gn76pnYB89U0rWcJxmJ2JxdJL_pd8Isfwk24U1fHtR4_aItSEmZNOqz8
飛馬砌機 : https://shop.pegasus.hk
砌機減 $220 優惠代碼(vg)
歡迎各公司提供優惠
00:00 引言廢話
00:17 聽爸爸的話
01:42 中秋節做左乜
02:21 AGI都有MicroSD
02:52 QLC大容量SSD殺到
04:06 攞你命7000MB三星980PRO
05:04 雙用Backup豆廠
05:53 無底線鍵帽一套
06:40 蛇牌三兄弟焦線登場
08:42 大大粒啪啪啪
10:16 鬍鬚佬新翻軸
11:18 訂閱及讚好,註解有優惠
讚好 FB 專頁:https://fb.me/ValorGears
加入 FB 群組:https://www.facebook.com/groups/VGPC9uper/
全新 VG 網站:https://www.valorgears.com
==============救救小VanVan課金贊助熱線==============
成為Youtube 會員 : https://www.youtube.com/channel/UC9jW6WpsAPgh-9HqDTvkFzg/join
Patreon 月費贊助 : https://www.patreon.com/valorgears
Paypal 贊助 : https://www.paypal.me/VansonChan
轉數快 贊助 : 5576129
Pay Me 贊助 : https://bit.ly/39dCpEF
agi電腦 在 AGI 亞奇雷 - Facebook 的推薦與評價
本活動限台灣本島地區,AGI保留活動修改、變更、中止權力。 秉鑫電腦滿額贈品數量有限,送完為止。 非本人之一手照片若經檢舉符實則失去活動參加資格。 ... <看更多>
agi電腦 在 Best choice for new generation computers新世代電腦首選固態 ... 的推薦與評價
AGI M.2 PCIE SSD - Best choice for new generation computers新世代 電腦 首選固態硬碟. 4 views 3 days ago. Agile Gear International. ... <看更多>
agi電腦 在 [新聞] AI聊天機器人ChatGPT引爆著作侵權疑雲? - 看板Tech_Job 的推薦與評價
AI聊天機器人ChatGPT引爆著作侵權疑雲?文字篇
https://bit.ly/3mCuMTA
AI聊天機器人ChatGPT橫空出世後,大家競相嘗試用它來撰寫各種東西,但這樣是否可能因此抄襲,踩到著作侵權的地雷,值得探討。
AI聊天機器人之濫觴到ChatGPT問世
早在1968年,美國電影大師史坦利·庫布里克(Stanley Kubrick)所執導的「2001太空漫遊」(2001: A Space Odyssey),迄今仍名列影史10大科幻電影,講述一艘太空船被派到木星調查,艙中人類科學家和超級電腦HAL,彼此能用人工智慧語言對談,隨後再展開人機鬥智殊死戰.…..,這些當初只是電影想像的情節,過了近半世紀到10年前智慧型手機內建標配語音助理,像Apple 的Siri或Amazon的Alexa,都使用自然語言處理(Natural Language Processing,以下稱NLP)技術,如今終於真的可以人機對談、查詢各種資訊。
但沒多久,人們就發現Siri固有其功能但受限於特定應用,並非真正具智慧的AI聊天機器人,而這個侷限終於在2022年11月底,由OpenAI所發表讓人驚豔的「生成式預訓練變換模型」ChatGPT(Chat Generative Pre-trained Transformer):一個由OpenAI訓練整合出的大型語言模型(LLM)打通任督二脈,迎來人類第一次可能通過「圖靈測試」(Turing Test)的扉頁。ChatGPT引爆前所未見的全球熱潮,發行僅二月餘就湧入上億人不斷「餵資料」,讓它成為萬事通!被認為已正式跨入強人工智慧(AGI: Artificial General
Intelligence)的門檻!而ChatGPT在AI界最大的突破,就是能處理極廣泛主題之通用AI。
果然(機器)人紅是非多,此項以AI類神經網路處理所發展出的強大工具,其反饋出來的自動生成內容日前已傳出在美國好幾件著作侵權官司,包括知名的OpenAI、微軟等公司都被告。許多人認為,由於ChatGPT必須輸入大量資料來訓練AI模型,而過程中必須進行大量文本的重製,包括維基百科、各式文學小說、書籍期刊、報章雜誌電視(含20家主流媒體)等內容,無一不遭到其拷貝置入語料數據庫進行練功之「毒手」(像華爾街日報和CNN就大肆抨擊其係「無償」盜用),且不僅文字,其他各種素材亦然,如此肆無忌憚的重製他人具有著作權之文字、圖畫、影像、影片(DA
LL-E、CLIP於文字與圖像間轉換生成)和開源碼(Microsoft的GitHub Copilot和OpenAI的Codex)等,終於衍生出著作權爭議訴訟,本文擬先介紹文字相關之自然語言處理著作權議題。
自然語言處理概論
質言之,自然語言處理(NLP)為研究電腦與人類語言間交流互動的科學,涉及多項領域的交叉學科,主要是用電腦科學、語言學和AI來使電腦理解、分析、生成和操作自然語言。其分為自然語言理解(Natural Language Understanding,NLU)和自然語言生成(Natural Language
Generating,NLG)二類型,NLU利用電腦理解人類自然語言的意涵,例如:網頁查詢或病例分析,NLG則利用電腦用生成自然語言來表達意思,例如:寫新聞、說故事;當二者結合便能實現機器翻譯與聊天機器人等功能。更進一步言,透過自然語言處理、語音辨識和情境感知等技術,使機器可感知當前情境,從而得與終端使用者進行溝通。
簡單來說,NLP就是電腦利用程式語言執行工程師設計好的演算法,對非結構化的人類語言資訊進行整理和解讀,使電腦擁有理解、分析、駕馭人類語言的能力,甚至能以人類使用的自然語言完全直接溝通。一般來說,NLP模型多半是以機率和統計建模,而預測下一個詞彙或句子的意思可能為何。舉例言,輸入一段文字:「今天天氣很冷,地面覆蓋X」時,電腦會根據前段出現的關鍵字「天氣」和「冷」,去預測X應填入「雪」、「冰」、「水」、「土」、「沙」之類的可能詞彙,並計算出每個詞彙的對應機率,結果由於「雪」的機率是相對最高,因此可能填入「雪」是最適合
之文意,其次才是「冰」、「水」等詞彙。
自然語言處理技術向來之發展
NLP發展歷程最早是先從基於規則(rule based)的系統開始,然後到基於統計(statistics based)的方法,再到深度學習技術,使其在理解和生成自然語言方面取得了顯著的進展。基於規則係以電腦軟體執行命令,NLP透過機器學習演算法模型,讓電腦從訓練資料集(training
dataset)中學習,並尋找資料所含的特定模式和趨勢,自動歸納或分類出語言規則,有效解決語言歧異性。如今,拜半導體晶片效能大幅提升運算速度之賜,AI可執行複雜的深度學習,讓電腦閱讀大量文章以找出前後文的語義特性,甚至自動摘要文章內容,通過訓練模型來識別文本中的模式和關係;另一常用的技術則是詞向量表示法,係將單詞轉換為數學向量的方法,以便電腦能夠對單詞進行操作。
而近年來深度學習又推動了NLP進一步的發展,其中的應用包括RNN(遞迴式神經網路,Recurrent Neural Network)、LSTM (長短期記憶網路,Long Short-Term Memory)。RNN在文字語言識別方面,常用於具有序列特性的資料,如演講、時間序列、文本詞彙序列、音節序列、影像影片序列與生成語句等,在短句方面有不錯的學習效果。而LSTM則是解決RNN以往只能做短句分析、與模型中梯度無法收斂等問題;另,LSTM透過複雜多層的遞迴結構,得以有效辨識各類有先後順序的訊息,適用於處理前後間隔較長時間序列的句子或段落。
如今,自從Google提出BERT(基於變換器的雙向編碼器表示技術,Bidirectional Encoder Representations from Transformers)預訓練模型(Pretrained
Models)後,NLP就有了突飛猛進的進展。這些技術和模型常用以排列詞句、片語、語音、文字及語句,形成類似於人類自然語言的形式,使得NLP在自然語言生成、語言理解、對話和問答系統獲得顯著進步。以上各種NLP研發,不外乎是進行:序列標記(如詞性標記)、分類(如主題分類)、句子關係判斷(如資訊萃取)、語料庫建立(一種透過詞語、詞性標記形成電腦可判讀分析之資料格式)、生成模式(如機器翻譯、自動摘要)等工作程序,基本上非常繁瑣。
ChatGPT技術運作邏輯之大突破
ChatGPT是由OpenAI開發之NLP模型GPT-3所延伸出的GPT-3.5 NLP生成模型。提到ChatGPT之前先談一下AI的基本運作,其實運作邏輯可簡單地想成一種如f (x) = ax + b的數學函式,其中x為可輸入的文字、對話、影像、圖畫、程式....等,而a和b則為AI的參數,最後,透過ax + b的運算後輸出f
(x)的結果,也就是AI的輸出結果。抑或是,針對NLP而言,如前面所舉的「今天天氣很冷,地面覆蓋X」的例子中,NLP會根據前文出現過的關鍵字,找出可能詞彙的機率分布(隨機抽取文字),然後挑選其中機率相對高的詞彙填入X。當然,ChatGPT實際運作要比前面所述更為複雜,不僅需透過數據工程師從巨量資料中標註資料、訓練和測試,而且過程中涉及至少千億個參數。
ChatGPT集結了機器學習中監督/非監督式學習、強化式學習、遷移式學習等技術,至於如何透過這些技術來達成今日人機對話的系統,首先要在網路上擷取眾多文章等各種形式之原始資料樣本,進而再透過AI訓練師對大量資料清洗、加工與模型訓練,再輔以人類訓練師進行強化式學習,由AI訓練師針對各項生成進行評分(reward),如果好就給它獎勵或高分,不好就給他負評,終於讓ChatGPT變得更強大!可以說,從稍早的GPT-3進展到現在GPT-3.5的ChatGPT,AI訓練師的介入是核心關鍵之一,才造就今日讓大家驚豔的結果。
問世以來,許多人認為ChatGPT對傳統的搜尋引擎可能造成重大衝擊,讓Google備感壓力。Google也在秘密開發聊天機器人Bard,可惜在與ChatGPT進行問答比賽時,因Bard答錯一題讓Google股價大跌7.4%,市值蒸發千億美金,所有風采都被ChatGPT搶走。ChatGPT之所以受到微軟青睞,另一個可能的原因,就是與Google搜尋引擎的差異化讓微軟看到新契機,並將新的AI搜尋引擎Bing添加到Windows 11的工具列中,用戶也可以在Edge中快速啟動Bing聊天機器人。
試想,當人們尋找一項答案時,ChatGPT不僅擔任使用者利用搜尋引擎找答案的角色,而且還能將找到的答案井井有條地回覆用戶,ChatGPT在這方面的確符合人類需求。儘管目前ChatGPT回覆的答案尚不盡正確,但經過幾番訓練之後,它不但日趨精進、且往往也會有些出令人意表的參考價值。
ChatGPT資料擷取之AI運作難於比對其出處
玩過ChatGPT的人都有這樣的經驗,當使用者在不同的時間輸入相同的問題,它會呈現出不同的回覆,有時甚至還大相逕庭。雖然ChatGPT的論文尚未公開(可參考姐妹版InstructGPT),但推測其可能是藉由隨機生成模式回答問題,這種模式,基本上無法找出該回覆內容之原始來源,究竟是從哪幾個網頁擷取或參照原生素材,因為它根本就不是直接從各種文字中直接擷取再複製呈現的概念,這和一般透過搜尋引擎點擊特定網頁後,可看到原生內容的做法完全不同!而ChatGPT最令人驚訝之處,即在於它能重新組織文字、架構、邏輯,而這也導致使用者利用ChatGPT自動生成內긊e後,難於以「一對一」的對應關係,去還原、比對究竟是襲用了哪些原來的內容,因此這種運作模式,可能將巧妙地避開潛在之著作侵權疑慮!基於以上的操作,接下來談著作權的議題。
按ChatGPT這樣大量引用(其實就是重製)他人具著作權的內容而遭受到抨擊,從法律角度看,這樣的行為到底會不會構成著作侵權?因現實世界中有太多的文字撰擬需求,這是現在大家應特別關注的重點,尤其是近年來眾多政治人物衍生論文抄襲的學倫爭議,動輒惹上官司。基本上,除非得到授權或以合理使用的方式外,否則不可以擅自使用他人的內容,此為著作權法最根本的原則!而在網路上,直接大量擷取他人素材複製到數據庫中,理論上已構成著作權法上之重製行為,惟此種「中間性重製」之情形,不見得立即推論出即構成侵權,例如早期搜尋引擎之操作,因其目ꨊ漲b指涉網站URL的路徑或出處,就不構成違法,接下來要看它呈現內容的方式。
概念與概念之表達二分原則 & 著作權之原創性
與專利絕對壟斷不同的保護標準,著作權因基於要促進文化發展、創造人類文明進步的立場,為了鼓勵他人創作,會開一扇門保留一些彈性空間,因此其專屬保護不像專利那般「只此一家、別無分號」地具有強烈之排他性。而著作權的基本原則是,只保護人類源於概念所寫出來的具體表達內涵,這就是著作權法傳統的「概念與概念表達二分原則」(“idea & expression of idea dichotomy” or “idea–expression distinction”) – 亦即「著作權不保護概念本身,而只保護概念表達出來的東西」[1]!
簡言之,概念指創作中可能涉及之抽象的主題、思想、觀念等,而概念表達則是用獨特的方式,在例如文字、圖像、音樂等形式中,將該抽象的意念落實地表現出人能看的到與感官的到之實際具體內容,來表達該作者內在的意念。根據此二分法原理,任何人參考、沿用他人著作內涵中所蘊藏相同或類似的概念是合法的,仍可自由發揮另行創作出自己不同表達內容的著作[2],而不用擔心有侵權之疑慮。
然而,著作權所要求的原創性,並不像專利所要求發明創造的高門檻,著作權相對採低標:只要不是抄襲他人有著作權的實際具體內容,而帶有一定程度的原創性,就夠格受到保護。如以文字方面為例,任何人撰文時可參考他人文章,但當自己要寫東西時,就必須謹守以上原則,不得產出跟他人相同或類似的文字、詞語、句子結構、章節安排,但卻可將他人文字中所隱含的概念,轉化成不同文字,經自己消化後寫成「概念相同」、但「表達完全不同」的內容,簡單說,抄別人的觀念可以,但抄到有血肉的文字內容就不行!當然,如果整篇文章都是別人的意涵,而完全用類似
的文字來取代,還是有擦邊球的侵害風險!根據以上原理,就可以來探究一下究竟ChatGPT,是否真能達到只引用他人概念、而不使用到他人實際之文字內容。
ChatGPT滾動生成不易構成實質相似
由於ChatGPT的資料來源之一,是透過網路爬蟲(web crawling)擷取大量具著作權資料,但進一步看ChatGPT的呈現方式,並非單純只是在網路上擷取內容,反而是經消化後改寫,再經整理後以不同面貌呈現。它也不像過去的專家系統那樣,把問題的答案加以「拼湊組合」後端出來!ChatGPT透過上述學習方式,經眾人不斷詢問而讓它越來越聰明,循序演進自己滾動生出不同內容!尤其特別的,只要不選擇新對話,在同一問題框架下,詢問者可不斷丟出更精準的問題指令(prompt),在往下發展的對答中,ChatGPT會來回調校優化,如此就揉合出諸多新內容。
也就是說,發問者在不斷饋入指令的同時,它又會更新產生許多實質內容,最後統合出邏輯連貫的表達內容,只要詢問者好好設計問題的詞彙或架構,越具有專業性與針對性,甚至給的指令越有層次,那麼所生成的內容就會越具體,最後的生成內容可幾乎與原先網路爬蟲所擷取具有著作權的內容不一樣,因此構成實質相似的可能性越來越低,甚至量變到質變而完全不同!不過,NLP本身因是建構於機率與統計的數學模型,且AI本身即存有難以解釋模型的黑盒子,人類尚無法完全準確解析,所以ChatGPT會產生與原作者類似的可能性也非絕無可能,因此使用ChatGPT撰文,更需괊n精心設計問題,且生成後應再反覆多幾輪深層的交叉提問,最好另加上若干自己的觀點,這樣才能舒緩著作之侵權疑義。
總之,以上ChatGPT內容擷取情形,是否必然可豁免於著作權侵害,雖尚待實際個案的檢驗,但至少從目前GitHub、OpenAI與微軟被告的這個案例中,可以看出起訴的原告,並未從著作權文字著作受到ChatGPT侵害來提告,反而是依「數位千禧年著作權法案」(DMCA: Digital Millennium Copyright Act)指控開源碼侵權,因此在現況下,ChatGPT似暫無被告「語言著作」侵害之危險(除非日後再追加提告)。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.36.27.219 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Tech_Job/M.1678427071.A.2FE.html
... <看更多>