好書推薦《#造局者》部落格文末抽獎贈書 2 本
這是我今年讀過最喜歡的書之一,作者探討在這個 AI 崛起和時局飄渺動盪的年代,人類已經無法跟演算法和電腦的計算速度競爭。但是,身為人類的我們仍然擁有一項電腦無法取代的優勢:「懂得建立、想像、創造各種思考框架的能力」,掌握這項能力的人在未來會愈來愈有優勢。
部落格文章 https://readingoutpost.com/framers/
Podcast 用聽的 https://readingoutpost.soci.vip/
.
【這本書在說什麼?】
《造局者》這本書的作者是三位學者共筆,他們都是在 AI 和 大數據領域有卓越的成就,分別是《經濟學人》雜誌資深編輯庫基耶(Kenneth Cukier)、英國牛津大學網路研究所教授麥爾.荀伯格(Viktor Mayer-Schönberger)、歐洲管理科技學院教授,決策、模型暨數據中心主任德菲爾利科德(Francis de Véricourt)。
他們發現在 AI 崛起和世局動盪的現在,人類最無可取代的能力之一就是「決策能力」,而要擁有好的決策能力就必須掌握許多不同的「思考框架」。因為當一個人能提出正確的思考框架,就能找出更多的選項,做出更好的決策,創造更好的局勢。深諳此道的人就被稱之為「造局者」。
這本書從人類如何做出好的決策出發,談到建立思考框架的重要性,也提供我們三種最重要的建立思考框架的方式。在書本中段,則說明了遇到瓶頸的時候,如何重啟另一個思考框架。在後半段則說明了我們該如何學習更多的思考框架,以及讓自己擁抱更加多元性的策略,並且培養敏銳的心智。
如同這本書的介紹影片裡談到的:生活中一切都需要抉擇,而做出更好抉擇的秘訣,就在於思考框架。駕馭這種思考方式可以讓你更瞭解世界、改善工作表現和人際關係、促進社會進步。這也是人類之所以能夠勝過機器和 AI 的因素。成為「造局者」正是未來人才必不可缺的關鍵技能。
.
【什麼是造局者?】
以標準的定義來說,「造局者」(Framer)指的就是起草美國憲法的那一群人,他們建立了聯邦政府的框架。因為美國憲法就像是一個思考框架,用來定義和界定聯邦政府的職權及程序。而在這本書中,造局者指的就是那些「懂得建立和運用思考框架的能手」。
這本書要講的重點之一,就是無論人們的地位高低,每個人都可以成為造局者:「能夠發揮和建立思考框架,或是重啟思考框架的能力,讓自己的生活乃至於整個世界有所不同。」作者也不斷強調建立思考框架所需要的技巧,可以靠著訓練與經驗不斷進步。這本書就像是一本操作指南。
.
【什麼是思考框架?】
在1970年代,「心智模型」(Mental Model)的概念開始流行,人類的推理並非以邏輯形式在運作,反而更像是在模擬現實:人們評估各種選項的方式,是去想像可能發生的種種情況。我們對於世界萬物的思考方式,會受到你「相信」這個世界如何運作而影響。因此,面對同樣一件事情,用不同心智模型在思考的人會有不同的觀點。
而在這本書中所謂的「思考框架」(Frame)就是我們選擇和應用的心智模型,這會決定我們如何理解世界、決定我們如何行動。面對一個新的情境,我們也可以用思考框架去歸納和歸類,並且想出一個抽象的概念,在應用到這個全新的情境裡面。
舉例來說,當我們要畫地圖的時候,經常會採取「笛卡爾直角坐標」的思考框架,這上面有X軸和Y軸的維度可以幫我們用2D的觀念畫出相對的距離和位置。可是當你要在台北市搭捷運從A地到B地的時候,反而採用「捷運地圖」的思考框架比較有效,雖然捷運地圖的站點之間,距離和位置都不是真實的呈現,可是卻能幫助乘客直覺地理解:下一站要去哪裡。這時的重點就不是距離和位置,而是清楚地辨認出目的地的站點該搭乘哪一條線。
所以當我們問:「哪一種地圖最好?」這個問題本身並沒有意義,而是會因為使用的情境和目的的不同,而產生不同的答案。所以,也沒有什麼叫做最正確的思考框架,都是要看情況和目的而定。讓自己成為建立思考框架的能手——也就是造局者,就能懂得如何選擇並且應用思考框架,這會是各種決定與行動的基礎。
.
【思考框架的轉變】
在聊主動建立思考框架之前,讓我們先看一個被動轉換思考框架的真實故事,這是書中提到一段關於朗讀到默讀的閱讀框架轉變。在西元11世紀之前,歐洲大部分都是在教堂才會有閱讀的行為,而且都是以「集體朗誦」的方式在進行,主要的目的是讓大家參與一個讚頌神的集體活動。但是到了11世紀之後,開始出現另外一種閱讀的框架,也就是「默讀」。
默讀讓閱讀這件事情不再是集體的體驗,而是一種個人的經歷。每個讀者都可以控制自己要讀快一點或慢一點,你也可以重複閱讀某一些篇章,自己可以慢慢思考書裡面的內容,產生新的點子,促進獨立思考。到底,是什麼東西造成了人們從朗讀的閱讀框架,轉移到默讀的閱讀框架呢?
在早期的書籍和文章裡面,常常沒有標點符號,字跟字之間也沒有空格,就像是一連串的字母之間不斷地延續。這種情況下光是要閱讀就非常困難了,想要默讀更是不可能的任務。這個時候集體朗讀就有它的功能,因為在一群人裡面,總會有人過去曾經讀過這篇本文,還記得某些字跟段落該怎麼念,就可以帶領大家一起朗讀下去。
在後來才出現了一項創新,書籍的字裡行間,開始有了「空格」和簡單的「標點符號」,這個時候就不再需要有人帶領,許多讀者可以自己進行斷句,獨自閱讀一本書了。於是,在這個時候人們就可以切換到另外一種閱讀框架。這件事情的影響非常的深遠,因為這一整個新世代的讀者都可以自行默讀,有助於人們自己的獨立思考,進而激發出更多元的思考框架。
.
【建立思考框架的三個方式】
建立思考框架的方式有三個:想清楚因果關係,想像出平行現實,運用物理學定律制定適合的限制條件。這三個特色正是應用思考框架的時候最重要的因素。值得注意的是,思考框架本身並不是解決方案,而且是尋找解決方案的工具。以下分別介紹這三個方式:
.
1.#因果關係
人類運用因果思維來看待這個世界,可以更容易理解世界,也有助於預測未來可能發生的事情,可以說人類是天生「因果推理」的機器。相較起來,AI 科技就無法擁有自己的因果思維,而是需要人類幫忙設定。舉經典的 Dota 電腦遊戲來說,這是一個兩隊人馬 5 vs. 5 互相廝殺,力求破壞對方大本營的遊戲。
科學家找來遊戲高手擔任 AI 策略的開發人員,設計了一些獎勵因素,讓 AI 跟自己進行的數百萬次的對戰,反覆嘗試錯誤,找出最好的操作手法。但是當 AI 跟人類正式交鋒的時候,人類還是取得了上風,尤其在團隊合作上面 AI 顯得像一團散沙。
後來,開發人員發現說,一般玩家會分成三個階段來安排戰鬥,所以開發人員就依照這樣的順序安排程式,在不同的階段給予不同的策略,調整獎勵的優先次序。然後開發人員就發現說一開始機器人通常只會照顧自己,所以還得幫他們建立「團隊合作」精神的框架。他們建立起了一些跨越個人遊戲角色的「超參數」,調整成一隻要達成共同獎勵的團隊。經過這一些修改之後,AI 反過來把人類打得落花流水。
值得注意的是,電腦不是自己學會這些事情的,而是因為人類先輸入了一些「因果框架」的獎勵因素,才可以讓這些運算發揮它的功效。同樣的現象發生在其他像是圍棋和西洋棋遊戲的對決,真正的突破並不在於機器高速的數字運算,而在於人類調整了 AI 對於因果關係(獎勵)的思考框架。
.
2.#平行現實
書中的說法是「反事實思考」,但我認為有點難懂,用「想像出另一個平行現實」比較好理解。這個方法可以讓我們跳脫當下對世界的認知,想像出一個全新的情境,問自己:「如果……會怎樣?」就像是小孩子在玩扮家家酒,或者是科學家透過抽象理論設計出全新的實驗。透過想像出一個平行現實,我們可以將因果關係轉換成實際行動,測試看看可能有什麼影響,帶來什麼後果。
心理學家高普尼克(Gopnik)認為這種能力其實在人類孩童時期就已經具備了,他還把嬰兒稱為「搖籃裡的科學家」,她設計過一個很有趣的實驗名叫「贊多測試」的假裝遊戲(贊多指的是顏色鮮豔、形狀可愛的物體)。
實驗的第一階段,高普尼克和孩童待在同一個房間,孩童會學到一個因果關係:把贊多放到一個機器上面,機器就會播放生日快樂歌,幫一隻猴子玩偶慶生。然後,在實驗的第二階段,會有實驗人員走進來把機器和贊多拿走,高普尼克和孩童一起露出失望的表情。
這時候高普尼克會拿出一個「盒子」、兩個不同顏色的「積木」,並對孩童說:「我們假裝這個盒子是機器,這塊積木是贊多,另一塊積木不是贊多。」接著她鼓勵孩童繼續幫猴子玩偶慶生。此時,孩童挑選了正確的積木,放到盒子上。即使她把兩塊積木的定義互相對調,孩童都能夠選到正確的積木。
這個假裝遊戲的實驗,證實了人類自幼就擁有了反事實思考的能力,也就是有能力可以想像出另一個平行現實。高普尼克發現,更會玩假裝遊戲的孩子,就能對平行現實做出更好的推論。她說:「嬰兒和幼兒就像人類社會的研發部門,至於成人這是那些單調無聊的製造與行銷部門。」許多人在成年之後,反而容易落入單一現實的思考方式,而忘記了我們天生就有想像平行現實的能力。
.
3.#限制條件
作者提到,所謂的建立思考框架,並不是任由想像力無邊無際地飛翔,也不是像斷了線的氣球到處亂飄,而是要有一定程度的「條件限制」,有助於約束我們的想像力,讓平行現實的想像維持在可以執行的程度,這才能讓思考光架真正發揮效用。
書中舉了一個很像電影裡才會發生的真實故事「恩德培行動」,這是一個以色列精銳部隊在恩德培機場的行動中,從恐怖分子手裡救出人質的戰鬥情節。1976年,恐怖分子綁架了飛機上106名人質,關押在烏干達的恩德培機場航廈中。當時烏干達獨裁者跟以色列當局並不友好,出動軍隊肯定不是好的選項。另一個方案是讓突擊隊員假裝成獲釋的巴基斯坦犯人,但太容易被看穿了。還有人提議讓突擊隊員降落在機場旁的湖裡,但是湖裡有許多鱷魚,而且任務結束之後這麼多人該怎麼全身而退?
評估了各種可能選項後,在種種條件限制之下,以色列想出了一個奇招:讓突擊隊搭乘運輸機在夜間降落到機場,搭乘機場內常見的車輛前往航廈,消滅恐怖份子、救出人質之後搭乘運輸機直接回國。他們在空軍基地搭建了航廈的等比例模型,透過少數獲釋的人質口中知道人質的大約位置,並且一次又一次地排練所有行動,講究到每一秒、每一步該怎麼進行。
在一個沒有烏雲的午夜,29位突擊隊員搭乘運輸機降落機場,他們身穿烏干達軍隊的服裝開著機場車輛前往航廈。突擊隊以迅雷不及掩耳的速度突擊航廈,只花了十分鐘就解決所有的恐怖分子,然後就帶著人質直接搭乘運輸機返回以色列。整場行動中只有三位人質喪生,而且連烏干達政府都還來不及反應。這個故事從天馬行空的平行現實裡,限縮了各種條件,找出了最可行的方案,最後成功執行了這次任務。
.
【重啟另一種思考框架】
當你想要解決一個全新問題的時候,尤其是還沒有人曾經解決過的問題,你可能會感到不知所措。這個時候,先透過兩個步驟來思考:(1) 先從自己腦袋裡的框架庫找找看,有沒有其他適用和類似的框架、(2) 檢查其他不同領域的框架庫,看看有沒有能夠直接借用,小幅度調整就可以使用的框架。
如果這兩個步驟都找不到適合的框架庫,那麼才嘗試最困難、也是最後的殺手鐧:「發明新的思考框架」。作者提醒道:「切換到不同的思考框架,能讓你對世界有不同的觀點,但這也有風險。」一旦你重新找到一個新的思考框架,帶來的報酬可以是相當可觀的。
書中有一個重啟框架的例子很值得我們參考,美國紐澤西南邊的小城市康登市為了改善當地的犯罪率,直接解散整個警察隊伍並且重整執勤策略。當時城市的治安非常糟糕,市容也很破舊,到處都會發生大小程度不同的犯罪。這還不是最慘的,警方栽贓、造假、暴力執法的情況更是屢見不鮮。民眾除了害怕黑道,也非常害怕警察。
當地首長找來社區領袖和居民共同商討,最後決定放棄頭痛醫頭、腳痛醫腳的貼膏藥方式,採取全新的執法策略。解散警隊之後,他們精挑細選和新聘任的警察,改變了巡邏的方式。他們逐家登門拜訪、自我介紹、談談可以幫忙居民什麼。警察在街頭舉辦派對,和民眾聚餐,和小孩打籃球。
過去的思考框架是「警方將人民視為罪犯」,但是新的思考框架則是「警民一家親」的社區群體,警察從原本打擊犯罪的戰士,搖身一變成了社區當中親切的守護者。最後,康登市的犯罪率下少了一半,謀殺率少了六成,警方過度使用武力的案件少了九成五。重啟思考框架的方式,獲得了前所未有的成功。
.
【創造多元性的四種策略】
作者指出,很多人可能會認為,想要擁有多元性就代表要接觸大量的想法和觀點,其實那是抓錯了重點。多元性的優勢不是來自於數量,而是來自於差異。找出七百個類似的想法,不如找出七個不同的想法來得有價值。如果一個工具箱可以有七種不同的工具,絕對會比擁有七百把錘子的工具箱更加實用。
如果我們想要擁有多元的思考框架,就是要刻意的去營造,以及一起維護,這並不是一次的成功就可以高枕無憂。如同貝佐斯在《創造與漫想》書中提到的:「這個世界要你與眾無異,千方百計把你拉向跟大家一樣,別讓它得逞。」人類本能的從眾傾向,以及社會自然而然的同質化趨勢,都需要我們自己刻意地、有意識地選擇,才能夠擺脫與眾趨同的自然發展,擁抱更加多元化的觀點和想法。
如果你想為自己的生活、家庭、工作環境創造出多元性的樣貌,可以採取以下四種策略:擁抱變化,運用教育,鼓勵遷徙,容許摩擦。
.
1.#擁抱變化
如果一個思考框架一直以來都行不通,最好的做法就是擁抱改變,試試看別種思考框架。書中舉例同性戀婚姻的推動者,把美國從1995年支持同婚的人從25%提高到2020年將近70%。以前的同志運動一直把婚姻當成是核心議題,也一直把爭取這種「法律權利」當作是重點。但是進展並不顯著。
當時那種法律思考的框架,講究的是「法律權利」,但就是沒有效果。那種框架太缺乏想像力、太唯物主義,沒有說服力。到了2000年,他們研究很多民意調查還有焦點團體的意見,想弄清楚大家到底還有什麼疑慮。他們去思考說要怎麼樣用大眾的思考模式來談。最後他們選定了一個價值觀的思考框架,鎖定大部分的人結婚的原因:「愛、奉獻、家庭」。
他們把同性戀婚姻不再當成一種自由或者是權利,而是對於愛的表達與承諾。他們漸漸的讓大家知道,世界上有許許多多不同的框架,而且都同樣正當。到了2011年,第一次出現的黃金交叉,支持的人數正式超過了反對的人數。根據調查,只有14%的人會說這是一種「自由」,而有32%的人會說這是一種「愛」,是一種人類的情感。最後在2015年聯邦最高法院正式裁定的用憲法來保障同性伴侶的結婚權利。這並不是強迫民眾接受某種特定的思考框架,而是讓各種不同的思考方式能夠共存。
.
2.#運用教育
要建立起多元的思考框架,從教育著手是非常有效的模式。美國有一個很有趣的研究,就是去看美國的白人父母和黑人父母怎麼跟孩子談論種族。發自內心一片好意的白人父母,通常不會去刻意談到種族議題,因為他們相信「種族色盲」這種做法比較能夠讓孩子避免成為種族主義者。
另一方面,黑人父母卻常常和孩子討論種族議題,在他們看來,這種種族色盲的做法就是在故意忽視各種明顯的歧視現象。例如逛超市的黑人被懷疑是小偷,開著車子卻無緣無故被警察攔下來,黑人孩子的家庭教育就是要強調看到「種族的各種顏色」在日常生活的各種影響。
最後,這些社會學家發現,種族色盲的框架正好是種族歧視的主要來源,白人父母雖然出自於好意不想強調種族之間的差異,但也在無意之間,否認了有色人種遭受到歧視的真實狀況。這種教育方式忽略了差異,抹去了多元性。要培養多元的思考,就必須認識到差異的存在,承認仍然存在的落差。
.
3.#鼓勵遷徙
如果我們能夠鼓勵遷徙及流動,人們會把自己的文化和思考方式帶到別的地方,促進融合和變化。曾經有學者研究各個區域和城市的經濟成敗因素,發現了這些地區成功背後的原因有三個主要的因素:「科技、人才、寬容」。作者認為,「寬容」是其中最關鍵的一項,那些現在最開放的地方,經濟表現就最好。因為這些地方有更大的思考地圖,會讓人能夠放手冒險,這也是思考框架多元化所造成的經濟紅利。
像是美國被譽為一個民族「熔爐」,但是最近比較像一個「燉湯」,也就是讓裡面的好料都還維持各自的形狀。像是韓國人會住在洛杉磯的韓國城,華人會住在舊金山的唐人街,拉丁美洲的族群住在德州南方,古巴人住在佛羅里達州,巴西人就住在波士頓。雖然這種文化融合的速度不像我們想像中的快速,但是不同的文化激盪之下,也為美國社會注入了很多元的觀點和看法。
.
4.#容許摩擦
把社會上的摩擦,看成是這個社會的優勢、而非缺點。作者說到:「如果在社會裡面維持思考框架的多元化,確實會讓人們彼此之間感覺到不安很衝突,就是因為大家要看到彼此的不同,而且還要可以彼此互動。但畢竟,大家觀點不同、意見相對,本來就是正常生活該有的模樣。」
哈佛法律學院的昂格(Unger)教授認為,如果要讓政治進一步的去中心化,就必須要用一些反事實的模型來做思考。他說:「當社會很果斷地沿著一條路前進的時候,應該要多方下注,以避免損失,也就是要允許在特定的地點或部門,跳脫一般的解決方案,實驗看看不同的國家走向會怎樣。」
昂格鼓勵讓社會充滿摩擦,也鼓勵教育上面要用辯證式的討論方式,不要讓社會被束縛在單一的版本,而是可以嘗試其他的社會組織方式。運用和擁抱多元的思考框架,才能擁有多樣化的各種策略,再從中選取適合的方案。
.
【對思考框架保持警覺】
這本書告訴我們,幾乎沒有錯誤的思考框架,只有不適合某種情況的思考框架。而且各種框架應該要有共同存在的權利。但是作者們提醒我們要保持一個警覺,他們說:「唯一要注意的是,這種慷慨的態度要有一個前提,也就是說:『唯一』的一種錯誤的思考框架,就是拒絕其他的思考框架。」
要讓框架多元性的目的,就是為了讓各種框架可以彼此競爭、互補、對抗、共存。然而,如果有某一套思考框架的目的在於完全抹煞其他框架的存在,這就是不可被接受的。所以作者們才說:「如果你聽到有任何人或團體,說只有自己的思考框架放諸四海皆準,只有自己說的是真理的時候,千萬別相信。」
.
【後記:拓展想像的邊界】
如果說另一本我很喜歡的《超級思維》那本書是心智模型的「百科全書」,那麼《造局者》就像是心智模型的「使用指南」。書中有清楚的概念和步驟,讓我們了解為什麼要學習更多的心智模型,以及該怎麼樣活用各種心智模型,並且在必要的時刻推翻自己的假設,重新啟動一個新的心智模型。
這本書是今年我讀過的書裡面感到非常印象深刻,也讓我的思考方式深受啟發的。作者們把故事和理論的比例搭配得恰到好處,從一則又一則的故事和研究案例當中,會自然而然地理解作者們要帶給我們的觀點,也讓我感受到什麼叫做多元性,以及為何要擁抱差異。
從書中也可以發現,AI 並不會削弱心智模型的重要性,反而是增強了心智模型的重要性。因為 AI 無法自己建立思考框架,仍然只能依靠人類。人類最重要的特色就是可以處理「假設之外」的新問題,能夠把心智模型的空間拓展到可以親身體驗的範圍之外,也就是能夠做到抽象與推理。人類只靠著極少數的資料,甚至是完全沒有新的資料,就能夠適應全新的、過去從來沒有體驗過的情境。
作者最後提醒到:「這是一個救贖也是一個警訊:一個人如果擁有建立思考框架的能力,就會保有價值。但要是放棄了努力,沒有辦法做好這件事情,就會失去現在人類的特權地位。」我們能夠想像的邊界,就是我們世界的邊界。
.
Kobo 購書連結:https://bit.ly/3rRI8Kg
Kobo 電子書7折代碼:WAKIFRAMER
使用期限:8/15~8/21
.
感謝 天下文化 提供贈獎抽書
「ai 檢查 外框」的推薦目錄:
- 關於ai 檢查 外框 在 Facebook 的精選貼文
- 關於ai 檢查 外框 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於ai 檢查 外框 在 李開復 Kai-Fu Lee Facebook 的最佳貼文
- 關於ai 檢查 外框 在 ai文字無法建立外框在PTT/Dcard完整相關資訊 - 星星公主 的評價
- 關於ai 檢查 外框 在 ai文字無法建立外框在PTT/Dcard完整相關資訊 - 星星公主 的評價
- 關於ai 檢查 外框 在 #提問AI文字建立外框有黑塊 - 設計板 | Dcard 的評價
- 關於ai 檢查 外框 在 ai文字轉外框的推薦與評價,PTT、DCARD 的評價
- 關於ai 檢查 外框 在 ai文字轉外框的推薦與評價,PTT、DCARD 的評價
- 關於ai 檢查 外框 在 ai文字外框還原在PTT/Dcard完整相關資訊 - 健康急診室 的評價
- 關於ai 檢查 外框 在 ai文字外框還原在PTT/Dcard完整相關資訊 - 健康急診室 的評價
- 關於ai 檢查 外框 在 稿件常見錯誤與基本檢查 - GoodCard專業合版印刷設計中心 的評價
- 關於ai 檢查 外框 在 Illustrator中的文字,究竟要不要轉外框再儲存為PDF給輸出中心 的評價
ai 檢查 外框 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
引進AI智慧科技更進一步提升保質期管理—日本冷藏全國76個DC
文章來源:文/編輯部
高品質與無壓力的作業模式,這看似天方夜譚,日冷物流集團卻實現了。這家在日本最早開展大型冷藏倉庫的企業,提出倉儲作業全面數位化升級,並引進利用平板電腦進行檢測作業的AI解決方案,實現輕鬆的工作運營。
引進圖像辨識的平板電腦
全面智慧化管理
伴隨人力短缺日益嚴重,為追求任何人都可以無需依靠經驗和悟性開展工作,推進作業標準化,日冷物流集團(英文名:NICHIREI;下文簡稱:日冷集團)制定了倉庫作業全面數位化的目標。具體來說,在日冷集團全國由DC型和TC型兩種模式組成的112個配送中心,其中76個DC型中心正在全面推進倉儲業務的智慧數位化。此前日冷集團引進AI智慧化管理,推廣使用可圖像辨識的平板電腦進行倉庫作業,便是其中一環。
從傳統紙質的表單作業開始到無線手持終端機,再到使用智慧化的平板電腦作業,經歷了將近80年。現在,文書工作基本已實現了數位化,改採智慧化管理的平板電腦,使入庫檢查工作減少30%,與檢查項目有關的文書工作減少50%。使用平板電腦的另一個好處是,可以制訂數位時間戳記與圖像辨識。日冷集團總公司事業革新推進部部長北川倫太郎先生,介紹了日冷集團倉庫作業平板電腦化的背景,「2017年6月,我們從入庫檢驗工作入手,開始逐步使用平板電腦進行入庫位置的確定、發貨時的揀選、發貨檢驗等工作,當時預計在2019年度內完成全部工作的數位化。」2019年4月,日冷集團為拓展平板電腦功能,推出在利用平板檢驗貨品時,通過人工智慧從攝影圖像中自動讀取包裝上標明的保質期(如圖①)。經過試運行後,同年8月,日冷集團開始在各個正在推廣使用平板電腦的中心橫向部署。該保質期自動讀取方案,搭載了Automagi公司開發的AI解決方案「AMY」。
升級倉庫作業流程
免除手工作業
此前,利用平板電腦檢驗入庫貨品的流程,從掃描托盤上的條碼開始,掃描JAN編碼(如圖②)並確認商品無誤後,平板電腦上就會顯示一個填表介面,相當於傳統的紙質保存申請表,上面有貨號、品名、規格、品牌等資訊(如圖③)。在這裡確認產品名稱無誤並點擊名稱,再用肉眼確認貨箱內容物的資訊,接下來再手動輸入保質期和數量(如圖④)。通過這一系列工作逐一確認收到的貨物無誤後,用可擕式印表機列印入庫標籤(如圖⑤),並將標籤貼在紙箱上(如圖⑥)。最後,工作人員用平板電腦對展示在箱體側面的保質期拍照,並記錄下來(如圖⑦),並同時把圖像資料傳給辦公室,如有必要,那邊的工作人員隨時可以對圖像進行核實。
相比之下,這次引進Automagi的AI解決方案能自動讀取保質期,通過基於OCR(光學字元辨識/讀取)和AI圖像識別的圖像預處理技術,能夠從圖像中識別出保質期的文字,將讀取的保質期資訊在雲端進行比對,實現精度更高的自動讀取功能。該解決方案的引進是一項開創性的舉措,在上述流程的基礎上省去了輸入保質期的工序,北川先生自信地說:在入庫檢驗方面,我們用人工智慧從照片上自動讀取保質期的技術,取代了在螢幕上點擊並輸入保質期的工序,不僅減少了輸入錯誤,而且還具有可保留照片資料存檔的優勢。換句話說,檢驗作業的完成品質進一步提高了。如圖⑧所示,包裝盒側面標明了保質期為2021年11月2日,將保質期框入平板電腦螢幕的指定框內,再進行拍攝,利用OCR進行讀取。將圖像資料上傳之後,會顯示被「AMY」識別後的候選日期,如果該日期與產品的保質期相符,只需點擊確定即可完成操作。換句話說,輸入資料的工序被省去了,只需要視覺確認。北川先生笑道:無論是AI還是OCR都不是100%準確,所以最後還是要靠人類自己的眼睛來判斷。
從幾近完美
到誰都可以做
另外,引進該方案得到的好處有三點:加強了品質控制;通過存檔保質期照片和簡便化的操作,使任何人都能輕鬆完成此項工作;實現輕鬆的工作運營。
首先為加強品質控制,日冷集團決定引進該人工智慧解決方案,最重要的原因就是為了從品質控制的角度出發,進一步杜絕保質期資料的錯誤輸入,提高準確性。
資料來源:https://www.logisticnet.com.tw/publicationArticle.asp?id=1070
ai 檢查 外框 在 李開復 Kai-Fu Lee Facebook 的最佳貼文
創新工場“AI蒙汗藥”入選NeurIPS 2019,3年VC+AI佈局進入科研收穫季
本文來自量子位微信公眾號
……………………………………………………………………
NeurIPS 2019放榜,創新工場AI工程院論文在列。
名為“Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder”。
一作是創新工場南京國際AI研究院執行院長馮霽,二作是創新工場南京國際人工智慧研究院研究員蔡其志,南京大學AI大牛周志華教授也在作者列。
論文提出了一種高效生成對抗訓練樣本的方法DeepConfuse,通過微弱擾動資料庫的方式,徹底破壞對應的學習系統的性能,達到“資料下毒”的目的。
創新工場介紹稱,這一研究就並不單單是為了揭示類似的AI入侵或攻擊技術對系統安全的威脅,還能協助針對性地制定防範“AI駭客”的完善方案,推動AI安全攻防領域的發展。
NeurIPS,全稱神經資訊處理系統大會(Conference and Workshop on Neural Information Processing Systems),自1987年誕生至今已有32年的歷史,一直以來備受學術界和產業界的高度關注,是AI學術領域的“華山論劍”。
作為AI領域頂會,NeurIPS也是最火爆的那個,去年會議門票在數分鐘內被搶光,而且在論文的投稿錄取上,競爭同樣激烈。
今年,NeurIPS會議的論文投稿量再創新高,共收到6743篇投稿,最終錄取1428篇論文,錄取率為21.2%。
▌“資料下毒”論文入選頂會NeurIPS
那這次創新工場AI工程院這篇入選論文,核心議題是什麼?
我們先拆解說說。
近年來,機器學習熱度不斷攀升,並逐漸在不同應用領域解決各式各樣的問題。不過,卻很少有人意識到,其實機器學習本身也很容易受到攻擊,模型並非想像中堅不可摧。
例如,在訓練(學習階段)或是預測(推理階段)這兩個過程中,機器學習模型就都有可能被對手攻擊,而攻擊的手段也是多種多樣。
創新工場AI工程院為此專門成立了AI安全實驗室,針對人工智慧系統的安全性進行了深入對評估和研究。
在被NeurIPS收錄的論文中,核心貢獻就是提出了高效生成對抗訓練資料的最先進方法之一——DeepConfuse。
▌給數據下毒
通過劫持神經網路的訓練過程,教會雜訊生成器為訓練樣本添加一個有界的擾動,使得該訓練樣本訓練得到的機器學習模型在面對測試樣本時的泛化能力盡可能地差,非常巧妙地實現了“資料下毒”。
顧名思義,“資料下毒”即讓訓練資料“中毒”,具體的攻擊策略是通過干擾模型的訓練過程,對其完整性造成影響,進而讓模型的後續預測過程出現偏差。
“資料下毒”與常見的“對抗樣本攻擊”是不同的攻擊手段,存在於不同的威脅場景:前者通過修改訓練資料讓模型“中毒”,後者通過修改待測試的樣本讓模型“受騙”。
舉例來說,假如一家從事機器人視覺技術開發的公司希望訓練機器人識別現實場景中的器物、人員、車輛等,卻不慎被入侵者利用論文中提及的方法篡改了訓練資料。
研發人員在目視檢查訓練資料時,通常不會感知到異常(因為使資料“中毒”的噪音資料在圖像層面很難被肉眼識別),訓練過程也一如既往地順利。
但這時訓練出來的深度學習模型在泛化能力上會大幅退化,用這樣的模型驅動的機器人在真實場景中會徹底“懵圈”,陷入什麼也認不出的尷尬境地。
更有甚者,攻擊者還可以精心調整“下毒”時所用的噪音資料,使得訓練出來的機器人視覺模型“故意認錯”某些東西,比如將障礙認成是通路,或將危險場景標記成安全場景等。
為了達成這一目的,這篇論文設計了一種可以生成對抗雜訊的自編碼器神經網路DeepConfuse。
通過觀察一個假想分類器的訓練過程更新自己的權重,產生“有毒性”的雜訊,從而為“受害的”分類器帶來最低下的泛化效率,而這個過程可以被歸結為一個具有非線性等式約束的非凸優化問題。
▌下毒無痕,毒性不小
從實驗資料可以發現,在MNIST、CIFAR-10以及縮減版的IMAGENET這些不同資料集上,使用“未被下毒”的訓練資料集和“中毒”的訓練資料集所訓練的系統模型在分類精度上存在較大的差異,效果非常可觀。
與此同時,從實驗結果來看,該方法生成的對抗雜訊具有通用性,即便是在隨機森林和支援向量機這些非神經網路上也有較好表現。
其中,藍色為使用“未被下毒”的訓練資料訓練出的模型在泛化能力上的測試表現,橙色為使用“中毒”訓練資料訓練出的模型的在泛化能力上的測試表現。
在CIFAR和IMAGENET資料集上的表現也具有相似效果,證明該方法所產生的對抗訓練樣本在不同的網路結構上具有很高的遷移能力。
此外,論文中提出的方法還能有效擴展至針對特定標籤的情形下,即攻擊者希望通過一些預先指定的規則使模型分類錯誤,例如將“貓”錯誤分類成“狗”,讓模型按照攻擊者計畫,定向發生錯誤。
例如,下圖為MINIST資料集上,不同場景下測試集上混淆矩陣的表現,分別為乾淨訓練資料集、無特定標籤的訓練資料集、以及有特定標籤的訓練資料集。
實驗結果有力證明,為有特定標籤的訓練資料集做相應設置的有效性,未來有機會通過修改設置以實現更多特定的任務。
對資料“下毒”技術的研究並不單單是為了揭示類似的AI入侵或攻擊技術對系統安全的威脅,更重要的是,只有深入研究相關的入侵或攻擊技術,才能有針對性地制定防範“AI駭客”的完善方案。
隨著AI演算法、AI系統在國計民生相關的領域逐漸得到普及與推廣,科研人員必須透徹地掌握AI安全攻防的前沿技術,並有針對性地為自動駕駛、AI輔助醫療、AI輔助投資等涉及生命安全、財富安全的領域研發最有效的防護手段。
▌還關注聯邦學習
除了安全問題之外,人工智慧應用的資料隱私問題,也是創新工場AI安全實驗室重點關注的議題之一。
近年來,隨著人工智慧技術的高速發展,社會各界對隱私保護及資料安全的需求加強,聯邦學習技術應運而生,並開始越來越多地受到學術界和工業界的關注。
具體而言,聯邦學習系統是一個分散式的具有多個參與者的機器學習框架,每一個聯邦學習的參與者不需要與其餘幾方共用自己的訓練資料,但仍然能利用其餘幾方參與者提供的資訊更好的訓練聯合模型。
換言之,各方可以在在不共用資料的情況下,共用資料產生的知識,達到共贏。
創新工場AI工程院也十分看好聯邦學習技術的巨大應用潛力。
今年3月,“Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder”論文的作者、創新工場南京國際人工智慧研究院執行院長馮霽代表創新工場當選為IEEE聯邦學習標準制定委員會副主席,著手推進制定AI協同及大資料安全領域首個國際標準。
創新工場也將成為聯邦學習這一技術“立法”的直接參與者。
▌創新工場AI工程院科研成績單
創新工場憑藉獨特的VC+AI(風險投資與AI研發相結合)的架構,致力於扮演前沿科研與AI商業化之間的橋樑角色。
創新工場2019年廣泛開展科研合作,與其他國際科研機構合作的論文,入選多項國際頂級會議,除上述介紹的“資料下毒”論文入選NeurlPS之外,還有8篇收錄至五大學術頂會,涉及影像處理、自動駕駛、自然語言處理、金融AI和區塊鏈等方向。
┃兩篇論文入選ICCV
Disentangling Propagation and Generation for Video Prediction
https://arxiv.org/abs/1812.00452
這篇論文的主要工作圍繞一個視頻預測的任務展開,即在一個視頻中,給定前幾幀的圖片預測接下來的一幀或多幀的圖片。
Joint Monocular 3D Vehicle Detection and Tracking
https://arxiv.org/abs/1811.10742
這篇論文提出了一種全新的線上三維車輛檢測與跟蹤的聯合框架,不僅能隨著時間關聯車輛的檢測結果,同時可以利用單目攝像機獲取的二維移動資訊估計三維的車輛資訊。
┃一篇論文入選IROS
Monocular Plan View Networks for Autonomous Driving
http://arxiv.org/abs/1905.06937
針對端到端的控制學習問題提出了一個對當前觀察的視角轉換,將其稱之為規劃視角,它把將當前的觀察視角轉化至一個鳥瞰視角。具體的,在自動駕駛的問題下,在第一人稱視角中檢測行人和車輛並將其投影至一個俯瞰視角。
┃三篇論文入選EMNLP
Multiplex Word Embeddings for Selectional Preference Acquisition
提出了一種multiplex詞向量模型。在該模型中,對於每個詞而言,其向量包含兩部分,主向量和關係向量,其中主向量代表總體語義,關係向量用於表達這個詞在不同關係上的特徵,每個詞的最終向量由這兩種向量融合得到。
What You See is What You Get: Visual Pronoun Coreference Resolution in Dialogues
https://assert.pub/papers/1909.00421
提出了一個新模型(VisCoref)及一個配套資料集(VisPro),用以研究如何將代詞指代與視覺資訊進行整合。
Reading Like HER: Human Reading Inspired Extractive Summarization
人類通過閱讀進行文本語義的摘要總結大體上可以分為兩個階段:1)通過粗略地閱讀獲取文本的概要資訊,2)進而進行細緻的閱讀選取關鍵句子形成摘要。
本文提出一種新的抽取式摘要方法來模擬以上兩個階段,該方法將文檔抽取式摘要形式化為一個帶有上下文的多臂老虎機問題,並採用策略梯度方法來求解。
┃一篇論文入選IEEE TVCG
sPortfolio: Stratified Visual Analysis of Stock Portfolios
https://www.ncbi.nlm.nih.gov/pubmed/31443006
主要是對於金融市場中的投資組合和多因數模型進行可視分析的研究。通過三個方面的分析任務來幫助投資者進行日常分析並升決策準確性。
並提出了一個全新的視覺化分析系統sPortfolio,它允許使用者根據持倉,因數和歷史策略來觀察投資組合的市場。sPortfolio提供了四個良好協調的視圖。
┃一篇論文入選NSDI
Monoxide: Scale Out Blockchain with Asynchronized Consensus Zones
https://www.usenix.org/system/files/nsdi19-wang-jiaping.pdf
提出了一種名為非同步共識組 Monoxide 的區塊鏈擴容方案,可以在由 4.8 萬個全球節點組成的測試環境中,實現比比特幣網路高出 1000 倍的每秒交易處理量,以及 2000 倍的狀態記憶體容量,有望打破“不可能三角”這個長期困擾區塊鏈性能的瓶頸。
▌獨特的“科研助推商業”思路
國內VC,發表論文都很少見,為什麼創新工場如此做?
這背後在於其“VC+AI”模式。
最獨特之處在于,創新工場的AI工程院可以通過廣泛的科研合作以及自身的科研團隊,密切跟蹤前沿科研領域裡最有可能轉變為未來商業價值的科研方向。
這種“科研助推商業”的思路力圖儘早發現有未來商業價值的學術研究,然後在保護各方智慧財產權和商業利益的前提下積極與相關科研方開展合作。
同時,由AI工程院的產品研發團隊嘗試該項技術在不同商業場景裡可能的產品方向、研發產品原型,並由商務拓展團隊推動產品在真實商業領域的落地測試,繼而可以為創新工場的風險投資團隊帶來早期識別、投資高價值賽道的寶貴機會。
“科研助推商業”並不是簡單地尋找有前景的科研專案,而是將技術跟蹤、人才跟蹤、實驗室合作、智慧財產權合作、技術轉化、原型產品快速反覆運算、商務拓展、財務投資等多維度的工作整合在一個統一的資源體系內,用市場價值為導向,有計劃地銜接學術科研與商業實踐。
以AI為代表的高新技術目前正進入商業落地優先的深入發展期,產業大環境亟需前沿科研技術與實際商業場景的有機結合。
創新工場憑藉在風險投資領域積累的豐富經驗,以及在創辦AI工程院的過程中積累的技術人才優勢,特別適合扮演科研與商業化之間的橋樑角色。
於是,創新工場AI工程院也就順勢而生。
創新工場人工智慧工程院成立於2016年9月,以“科研+工程實驗室”模式,規劃研發方向,組建研發團隊。
目前已經設有醫療AI、機器人、機器學習理論、計算金融、電腦感知等面向前沿科技與應用方向的研發實驗室,還先後設立了創新工場南京國際人工智慧研究院、創新工場大灣區人工智慧研究院。
目標是培養人工智慧高端科研與工程人才,研發以機器學習為核心的前沿人工智慧技術,並同各行業領域相結合,為行業場景提供一流的產品和解決方案。
而且, 創新工場還與國內外著名的科研機構廣泛開展科研合作。
例如,今年3月20日,香港科技大學和創新工場宣佈成立電腦感知與智慧控制聯合實驗室(Computer Perception and Intelligent Control Lab)。
此外,創新工場也積極參與了國際相關的技術標準制定工作。例如,今年8月,第28屆國際人工智慧聯合會議(IJCAI)在中國澳門隆重舉辦,期間召開了IEEE P3652.1(聯邦學習基礎架構與應用)標準工作組第三次會議。
IEEE聯邦學習標準由微眾銀行發起,創新工場等數十家國際和國內科技公司參與,是國際上首個針對人工智慧協同技術框架訂立標準的專案。
創新工場表示,自身的科研團隊將深度參與到聯邦學習標準的制定過程中,希望為AI技術在真實場景下的安全性、可用性以及保護資料安全、保護使用者隱私貢獻自己的力量。
ai 檢查 外框 在 ai文字無法建立外框在PTT/Dcard完整相關資訊 - 星星公主 的推薦與評價
如何在Illustrator 建立文字當文字到達邊框時,會自動折行來符合外框。 當您要建立一個或多個段落,例如用於傳單上時,用這個方式輸入文字很 ...如何檢查 ... ... <看更多>
ai 檢查 外框 在 #提問AI文字建立外框有黑塊 - 設計板 | Dcard 的推薦與評價
有檢查後面沒有疊到色塊用Shift+Ctrl+O或右鍵建立外框都會有黑色塊用上排工具列的文字-建立外框則會出現無法建立文字外框. ... <看更多>
ai 檢查 外框 在 ai文字無法建立外框在PTT/Dcard完整相關資訊 - 星星公主 的推薦與評價
如何在Illustrator 建立文字當文字到達邊框時,會自動折行來符合外框。 當您要建立一個或多個段落,例如用於傳單上時,用這個方式輸入文字很 ...如何檢查 ... ... <看更多>