ref: https://sysdig.com/blog/dockerfile-best-practices/
如果你常用到容器化、微服務架構,這些輕量化的架構當碰到問題時,背後的資安事件調查、報告、修復卻是影響甚鉅。然而,這些影響都可以透過「把安全意識擺在開發階段 (shifting left security)」來降低風險,而這篇文章就會講述 Dockerfile 的最佳實作手段有哪一些。
首先,我們會從幾個大面向來說明各種控制安全風險的細節,像是權限控管、降低攻擊層面、預防機敏資料洩漏,以及在發布 container image 時的注意事項。而你需要特別注意的是,其實 Dockerfile 也只是算是開發階段的一部份,所以這邊能提醒到的內容都屬於部署前(特別是開發階段)的準備。以下共提及 20 個你可以注意的重點,但因為篇幅較長,筆者將選出較重要的幾個來談談。
讓我們從「權限控管」說起:
Rootless container
根據報告結果顯示,有超過 58% 的 image 都是用 root 作為執行服務的使用者,所以在此也會建議透過 USER 參數來設定容器的預設使用者,同時,也可以利用執行環境/架構的設定來避免容器的預設使用者是 root。
Make executables owned by root and not writable
服務的 binary file 應該避免被任何人修改,容器的預設使用者只需要執行服務的權限,而不是擁有權。
至於「減少攻擊面」的部分:
Multistage builds小
在 image 的建立,可以透過 multistage build 來建立很多層 container,例如在第一層安裝編譯所需的套件,而第二層則只需安裝 runtime 所需的套件(如 openssl 等),再複製第一層所編譯出來的執行檔就可以了。其餘的因開發/編譯所安裝的套件皆不需要放在最後的 image,這樣同時也可以把 image 的大小縮小。
Distroless & Truested image
採用最小/最輕量化的 base image 來作為你打造 image 的基礎,同時使用可信任來源的 image,避免不小心在未知的情況引入好幾個潛在的安全威脅。(在原文中,sysdig 也使用了自身開發的工具來檢測 image 是否有安全問題,如果有需要也能參考看看)
而再來關於「機敏資訊」的部分:
Copy
當你在從你的開發環境複製檔案到 image 當中時,需要非常小心,因為你很可能一不小心就把你的密碼、開發環境的 token、API key 等資訊複製進去了。而且不要以為把 container 裡面的檔案刪掉就沒事了,別忘了 container image 是一層一層堆疊起來的,就算刪掉了,還是能在前面的 layer 裡面找到。
但如果還是有需要用到這些機敏資料,也可以考慮使用環境變數(docker run -e 引入),或是 Docker secret、Kubernetes secret 也能夠幫你引入這些參數。如果是設定檔的話,則可以用 mount 的方式來掛載到你的 container 裡面。
總而言之,你的 image 裡面不該有任何機敏資料、設定檔,開發服務時讓服務在 runtime 的時候可以接受來自環境變數的參數才是相對安全的。
其他的部分:
其實文章當中還有提到很多製作 image 的注意事項,像是在 deployment 階段,可能你部署的 latest 與實際的 latest 因時間差而不同。又或是在 image 裡面加上 health check,也才能做到狀況監測。
在容器化服務的時代,開發者不僅需要具備撰寫開發程式的能力,也要對於虛擬化環境有足夠的理解,否則,在對架構不熟的情況就將服務部署上去,或把 image 推送到公開的 registry,都可能造成重要的資料外洩與潛在的資安危機。
docker參數 在 矽谷牛的耕田筆記 Facebook 的最佳解答
本篇文章是一個深度介紹文,除了探討 K3S 與 K3D 的關係之外,還針對 K3D 的架構與使用方法很詳細的介紹一番,包含了
1. K3D v3 的特色與架構
2. 如何替換 K3D 裡面的 CNI
3. 如何替換 k3D 預設的 Ingress Controller
4. 使用 private registry 來處理
Kubernetes 的變化版本很多,除了 k3s 之外後來還有 k0s 的出現,每個版本都有自己想要解決的問題,而 k3s 則是一個非常輕量的 Kubernetes 版本,其特色有
1. 使用 Flannel 作為其預設 CNI,不講求太多複雜功能,單純用 VXLAN 打造一個 L2 的 overlay 網路
2. 使用 CoreDNS,與原生一樣
3. 使用 SQLite3 當作預設的 DB,而非 etcd3
4. 使用 Traefik 當作預設的 Ingress Controller,原生 K8s 則把這個主動權交給使用者
5. 使用 Containerd 當作預設的 Container Runtime
而 K3D 就是基於 K3S 的測試環境, K3S in Docker,跟 KIND 類似,只是運行的 Kubernetes 發行版本不同。
相較於 KIND 而已, K3D 的架構稍微複雜一點
1. 為了方便測試與存取,k3D 部署的時候也會部署一個 Nginx Server 來當作簡易的 Load-Balacner,讓 K3D 內的 Ingress 服務可以更簡易的被存取。使用者只需要存取該 Load-Balancer 即可,不需要去針對 Node(Docker) 的 IP 存取
2. 可以支援動態加入與刪除節點
本篇文章算是非常詳細的介紹各種參數用法,對於 K3D 這種測試環境有興趣的可以參考看看
https://yannalbou.medium.com/k3s-k3d-k8s-a-new-perfect-match-for-dev-and-test-e8b871aa6a42
docker參數 在 矽谷牛的耕田筆記 Facebook 的最佳解答
本文延續前篇效能校正的經驗談,上篇文章探討了關於應用程式本身可以最佳化的部分,包含了應用程式以及框架兩個部分。本篇文章將繼續剩下最佳化步驟的探討。
Speculative Execution Mitigations
接下來探討這個最佳化步驟對於效能有顯著的提升,但是本身卻是一個非常具有爭議性的步驟,因為其涉及到整個系統的安全性問題。
如果大家對前幾年非常著名的安全性漏洞 Spectre/Meltdown 還有印象的話,本次這個最佳化要做的就是關閉這類型安全性漏洞的處理方法。
標題的名稱 Speculative Execution Migitations 主要跟這漏洞的執行概念與 Pipeline 有關,有興趣理解這兩種漏洞的可以自行研究。
作者提到,大部分情況下這類型的防護能力都應該打開,不應該關閉。不過作者認為開關與否應該是一個可以討論的空間,特別是如果已經確認某些特別情境下,關閉防護能力帶來的效能如果更好,其實也是一個可以考慮的方向。
舉例來說,假設今天你運行了基於 Linux 使用者權限控管與 namespaces 等機制來建立安全防護的多使用者系統,那這類型的防護能力就不能關閉,必須要打開來防護確保整體的 Security Boundary 是完整的。 但是如果今天透過 AWS EC2 運行一個單純的 API Server,假設整個機器不會運行任何不被信任的程式碼,同時使用 AWS Nitro Enclaves 來保護任何的機密資訊,那這種情況下是否有機會可以關閉這類型的檢查?
作者根據 AWS 對於安全性的一系列說明認為 AWS 本身針對記憶體的部分有很強烈的保護,包含使用者之間沒有辦法存取 Hyperviosr 或是彼此 instance 的 Memory。
總之針對這個議題,有很多的空間去討論是否要關閉,以下就單純針對關閉防護能力帶來的效能提升。
作者總共關閉針對四種攻擊相關的處理能力,分別是
Spectre V1 + SWAPGS
Spectre V2
Spectre V3/Meltdown
MDS/Zombieload, TSX Anynchronous Abort
與此同時也保留剩下四個,如 iTLB multihit, SRBDS 等
這種設定下,整體的運作效能再次提升了 28% 左右,從 347k req/s 提升到 446k req/s。
註: 任何安全性的問題都不要盲從亂遵循,都一定要評估判斷過
Syscall Auditing/Blocking
大部分的情況下,Linux/Docker 處理關於系統呼叫 Auditing/Blocking 兩方面所帶來的效能影響幾乎微乎其微,不過當系統每秒執行數百萬個系統呼叫時,這些額外的效能負擔則不能忽視,如果仔細觀看前述的火焰圖的話就會發線 audit/seccomp 等數量也不少。
Linux Kernel Audit 子系統提供了一個機制來收集與紀錄任何跟安全性有關的事件,譬如存取敏感的機密檔案或是呼叫系統呼叫。透過這些內容可以幫助使用者去除錯任何不被預期的行為。
Audit 子系統於 Amazon Linux2 的環境下預設是開啟,但是本身並沒有被設定會去紀錄系統呼叫的資訊。
即使 Audit 子系統沒有真的去紀錄系統呼叫的資訊,該子系統還是會對每次的系統呼叫產生一點點的額外處理,所以作者透過 auditctl -a never,task 這個方式來將整體關閉。
註: 根據 Redhat bugzilla issue #1117953, Fedora 預設是關閉這個行為的
Docker/Container 透過一連串 Linux Kernel 的機制來隔離與控管 Container 的執行權限,譬如 namespace, Linux capabilities., cgroups 以及 seccomp。
Seccomp 則是用來限制這些 Container 能夠執行的系統呼叫類型
大部分的容器化應用程式即使沒有開啟 Seccomp 都能夠順利的執行,執行 docker 的時候可以透過 --security-opt seccomp=unconfined 這些參數告訴系統運行 Container 的時候不要套用任何 seccomp 的 profile.
將這兩個機制關閉後,系統帶來的效能提升了 11%,從 446k req/s 提升到 495k req/s。
從火焰圖來看,關閉這兩個設定後,syscall_trace_enter 以及 syscall_slow_exit_work 這兩個系統呼叫也從火焰圖中消失,此外作者發現 Amazon Linux2 預設似乎沒有啟動 Apparmor 的防護,因為不論有沒有關閉效能都沒有特別影響。
Disabling iptables/netfilter
再來的最佳化則是跟網路有關,大名鼎鼎的 netfilter 子系統,其中非常著名的應用 iptables 可以提供如防火牆與 NAT 相關功能。根據前述的火焰圖可以觀察到,netfilter 的進入 function nf_hook_slow 佔據了大概 18% 的時間。
將 iptables 關閉相較於安全性來說比較沒有爭議,反而是功能面會不會有應用程式因為 iptables 關閉而不能使用。預設情況下 docker 會透過 iptables 來執行 SNAT與 DNAT(有-p的話)。
作者認為現在環境大部分都將 Firewall 的功能移到外部 Cloud 來處理,譬如 AWS Security Group 了,所以 Firewall 的需求已經減少,至於 SNAT/DNAT 這類型的處理可以讓容器與節點共享網路來處理,也就是運行的時候給予 “–network=host” 的模式來避免需要 SNAT/DNAT 的情境。
作者透過修改腳本讓開機不會去預設載入相關的 Kernel Module 來達到移除的效果,測試起來整體的效能提升了 22%,從 495k req/s 提升到 603k req/s
註: 這個議題需要想清楚是否真的不需要,否則可能很多應用都會壞掉
作者還特別測試了一下如果使用 iptables 的下一代框架 nftables 的效能,發現 nftables 的效能好非常多。載入 nftables 的kernel module 並且沒有規則的情況下,效能幾乎不被影響(iptables 則相反,沒有規則也是會影響速度)。作者認為採用 nftables 似乎是個更好的選擇,能夠有效能的提升同時也保有能力的處理。
不過 nftables 的支援相較於 iptables 來說還是比較差,不論是從 OS 本身的支援到相關第三方工具的支援都還沒有這麼完善。就作者目前的認知, Debian 10, Fedora 32 以及 RHEL 8 都已經轉換到使用 nftables 做為預設的處理機制,同時使用 iptables-nft 這一個中介層的轉換者,讓所有 user-space 的規則都會偷偷的轉換為底層的 nftables。
Ubuntu 似乎要到 20.04/20.10 的正式版本才有嘗試轉移到的動作,而 Amazon Linux 2 依然使用 iptables 來處理封包。
下篇文章會繼續從剩下的五個最佳化策略繼續介紹
https://talawah.io/blog/extreme-http-performance-tuning-one-point-two-million/