「沒有 #永遠不出差錯 的網路 ,因此衡量的標準,應該在 Fastly 這樣的大型網路公司可以從這次的中斷事件裡, 以 #不到一個小時 的速度恢復一切。」
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
「google cdn是什麼」的推薦目錄:
- 關於google cdn是什麼 在 TechOrange 科技報橘 Facebook 的最佳貼文
- 關於google cdn是什麼 在 Taipei Ethereum Meetup Facebook 的最讚貼文
- 關於google cdn是什麼 在 矽谷輕鬆談 Just Kidding Tech Facebook 的最佳解答
- 關於google cdn是什麼 在 コバにゃんチャンネル Youtube 的最佳貼文
- 關於google cdn是什麼 在 大象中醫 Youtube 的最佳解答
- 關於google cdn是什麼 在 大象中醫 Youtube 的最佳解答
- 關於google cdn是什麼 在 [GCP 教學] 027 Cloud CDN 是什麼?功能介紹與效能測試[有字幕] 的評價
- 關於google cdn是什麼 在 在 6 分鐘內了解什麼是 Cloud CDN - Facebook 的評價
- 關於google cdn是什麼 在 簡直是Google Play、Kindle、Netflix的合體- 古巴的「人肉CDN」 的評價
- 關於google cdn是什麼 在 [GCP] 透過Content Header 確認Cloud CDN Cache 加速 的評價
google cdn是什麼 在 Taipei Ethereum Meetup Facebook 的最讚貼文
📜 [專欄新文章] [ZKP 讀書會] Trust Token Browser API
✍️ Yuren Ju
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Trust Token API 是一個正在標準化的瀏覽器 API,主要的目的是在保護隱私的前提下提供跨站授權 (Cross-domain authorization) 的功能,以前如果需要跨站追蹤或授權通常都使用有隱私疑慮的 Cookies 機制,而 Trust Token 則是希望在保護隱私的前提下完成相同的功能。
會在 ZKP (Zero-knowledge proof) 讀書會研究 Trust Token 主要是這個 API 採用了零知識證明來保護隱私,這也是這次讀書會中少見跟區塊鏈無關的零知識證明應用。
問題
大家應該都有點了一個產品的網頁後,很快的就在 Facebook 或是 Google 上面看到相關的廣告。但是產品網頁並不是在 Facebook 上面,他怎麼會知道我看了這個產品的頁面?
通常這都是透過 Cookie 來做跨網站追蹤來記錄你在網路上的瀏覽行為。以 Facebook 為例。
當使用者登入 Facebook 之後,Facebook 會透過 Cookie 放一段識別碼在瀏覽器裡面,當使用者造訪了有安裝 Facebook SDK 來提供「讚」功能的網頁時,瀏覽器在載入 SDK 時會再度夾帶這個識別碼,此時 Facebook 就會知道你造訪了特定的網頁並且記錄下來了。如此一來再搭配其他不同管道的追蹤方式,Facebook 就可以建構出特定使用者在網路上瀏覽的軌跡,從你的瀏覽紀錄推敲喜好,餵給你 Facebook 最想給你看的廣告了。
不過跨站追蹤也不是只能用在廣告這樣的應用上,像是 CDN (Content Delivery Network) 也是一個應用場景。CDN 服務 Cloudflare 提供服務的同時會利用 Captcha 先來確定進入網站的是不是真人或是機器人。而他希望使用者如果是真人時下次造訪同時也是採用 Cloudflare 服務的網站不要再跳出 Captcha 驗證訊息。
雖然 Cloudflare 也需要跨站驗證的功能來完成他們的服務,但是相較於 Google 或 Facebook 來說他們是比較沒那麼想知道使用者的隱私。有沒有什麼辦法可以保護使用者隱私的狀況下還能完成跨站驗證呢?
這就是今天要講的新 API: Trust Token。
Trust Token API - The Chromium Projects
Trust Token / Privacy Pass 簡介
Trust Token 其實是由 Privacy Pass 延伸而來。Privacy Pass 就是由 Cloudflare 所開發的實驗性瀏覽器延伸套件實作一個驗證機制,可以在不透漏過多使用者隱私的前提下實作跨站驗證。而 Trust Token 則是標準化的 Privacy Pass,所以兩個運作機制類似,但是實作方式稍有不同。
先看一下 Privacy Pass 是如何使用。因為這是實驗性的瀏覽器延伸套件所以看起來有點陽春,不過大致上還是可以了解整個概念。
以 hCaptcha 跟 Cloudflare 的應用為例,使用者第一次進到由 Cloudflare 提供服務的網站時,網站會跳出一些人類才可以解答的問題比如說「挑出以下是汽車的圖片」。
當使用者答對問題後,Cloudflare 會回傳若干組 blind token,這些 blind token 還會需要經過 unblind 後才會變成真正可以使用的 token,這個過程為 issue token。如上圖所示假設使用者這次驗證拿到了 30 個 token,在每次造訪由 Cloudflare 服務的網站時就會用掉一個 token,這個步驟稱為 redeem token。
但這個機制最重要的地方在於 Cloudflare 並無法把 issue token 跟 redeem token 這兩個階段的使用者連結在一起,也就是說如果 Alice, Bob 跟 Chris 都曾經通過 Captcha 測試並且獲得了 Token,但是在後續瀏覽不同網站時把 token 兌換掉時,Clouldflare 並無法區分哪個 token 是來自 Bob,哪個 token 是來自 Alice,但是只要持有這種 token 就代表持有者已經通過了 Captcha 的挑戰證明為真人。
但這樣的機制要怎麼完成呢?以下我們會透過多個步驟的例子來解釋如何達成這個目的。不過在那之前我們要先講一下 Privacy Pass 所用到的零知識證明。
零知識證明 (Zero-knowledge proof)
零知識證明是一種方法在不揭露某個祕密的狀態下,證明他自己知道那個秘密。
Rahil Arora 在 stackexchange 上寫的比喻我覺得是相對好理解的,下面簡單的翻譯一下:
假設 Alice 有超能力可以幾秒內算出樹木上面有幾片樹葉,如何在不告訴 Bob 超能力是怎麼運作並且也不告訴 Bob 有多少片葉子的狀況下證明 Alice 有超能力?我們可以設計一個流程來證明這件事情。
Alice 先把眼睛閉起來,請 Bob 選擇拿掉樹上的一片葉子或不拿掉。當 Alice 睜開眼睛的時候,告訴 Bob 他有沒有拿掉葉子。如果一次正確的話確實有可能是 Alice 幸運猜到,但是如果這個過程連續很多次時 Alice 真的擁有數葉子的超能力的機率就愈來愈高。
而零知識證明的原理大致上就是這樣,你可以用一個流程來證明你知道某個秘密,即使你不真的揭露這個秘密到底是什麼,以上面的例子來說,這個秘密就是超能力運作的方式。
以上就是零知識證明的概念,不過要完成零知識證明有很多各式各樣的方式,今天我們要介紹的是 Trust Token 所使用的零知識證明:DLEQ。
DLEQ (Discrete Logarithm Equivalence Proof)
說明一下以下如果小寫的變數如 c, s 都是純量 (Scalar),如果是大寫如 G, H則是橢圓曲線上面的點 (Point),如果是 vG 則一樣是點,計算方式則是 G 連續相加 v 次,這跟一般的乘法不同,有興趣可以程式前沿的《橢圓曲線加密演算法》一文解釋得比較詳細。
DLEQ 有一個前提,在系統中的所有人都知道公開的 G 跟 H 兩個點,此時以下等式會成立:
假設 Peggy 擁有一個秘密 s 要向 Victor 證明他知道 s 為何,並且在這個過程中不揭露 s 真正的數值,此時 Victor 可以產生一個隨機數 c 傳送給 Peggy,而 Peggy 則會再產生一個隨機數 v 並且產生 r,並且附上 vG, vH, sG, sH:
r = v - cs
所以 Victor 會得到 r, sG, sH, vG, vH 再加上他已經知道的 G, H。這個時候如果 Victor 計算出以下兩個等式就代表 Peggy 知道 s 的真正數值:
vG = rG + c(sG)vH = rH + c(sH)
我們舉第二個等式作為例子化簡:
vH = rH + c(sH) // 把 r 展開成 v - csvH = (v - cs)H + c(sH) // (v - cs)H 展開成 vH - csHvH = vH - c(sH) + c(sH) // 正負 c(sH) 消掉vH = vH
這樣只有 Peggy 知道 s 的狀況下才能給出 r,所以這樣就可以證明 Peggy 確實知道 s。
從簡易到實際的情境
Privacy Pass 網站上透過了循序漸進的七種情境從最簡單的假設到最後面實際使用的情境來講解整個機制是怎麼運作的。本文也用相同的方式來解釋各種情境,不過前面的例子就會相對比較天真一點,就請大家一步步的往下看。
基本上整個過程是透過一種叫做 Blind Signature 的方式搭配上零知識證明完成的,以下參與的角色分為 Client 與 Server,並且都會有兩個階段 issue 與 redeem token。
Scenario 1
如果我們要設計一個這樣可以兌換 token 來確認身分的系統,其中有一個方法是透過橢圓曲線 (elliptic curve) 完成。Client 挑選一個在橢圓曲線上的點 T 並且傳送給 Server,Server 收到後透過一個只有 Server 知道的純量 (scalar) s 對 T 運算後得到 sT 並且回傳給 Client,這個產生 sT 的過程稱為 Sign Point,不過實際上運作的原理就是橢圓曲線上的連續加法運算。
SignPoint(T, s) => sT
等到 Client 需要兌換時只要把 T 跟 sT 給 Server,Server 可以收到 T 的時候再 Sign Point 一次看看是不是 sT 就知道是否曾經 issue 過這個 token。
Issue
以下的範例,左邊都是 Client, 右邊都是 Server。 -> 代表 Client 發送給 Server,反之亦然。
// Client 發送 T 給 Server, 然後得到 sT
T -> <- sT
Redeem
// Client 要 redeem token 時,傳出 T 與 sT
T, sT ->
問題:Linkability
因為 Server 在 issue 的時候已經知道了 T,所以基本上 Server 可以透過這項資訊可以把 issue 階段跟 redeem 階段的人連結起來進而知道 Client 的行為。
Scenario 2
要解決上面的問題,其中一個方法是透過 Blind Signature 達成。Client 不送出 T,而是先透過 BlindPoint 的方式產生 bT 跟 b,接下來再送給 Server bT。Server 收到 bT 之後,同樣的透過 Sign Point 的方式產生結果,不一樣的地方是情境 1 是用 T,而這邊則用 bT 來作 Sign Point,所以得出來的結果是 s(bT)。
Client:BlindPoint(T) => (bT, b)
Server:SignPoint(bT, s) => sbT
而 Blind Signature 跟 Sign Point 具備了交換律的特性,所以得到 s(bT) 後可以透過原本 Client 已知的 b 進行 Unblind:
UnblindPoint(sbT, b) => sT
這樣一來在 Redeem 的時候就可以送出 T, sT 給 Server 了,而且透過 SignPoint(T, s) 得出結果 sT’ 如果符合 Client 傳來的 sT 就代表確實 Server 曾經簽過這個被 blind 的點,同時因為 T 從來都沒有送到 Server 過,所以 Server 也無法將 issue 與 redeem 階段的 Client 連結在一起。
Issue
bT -> <- s(bT)
Redeem
T, sT ->
問題:Malleability
以上的流程其實也有另外一個大問題,因為有交換律的關係,當 Client 透過一個任意值 a 放入 BlindPoint 時產生的 a(sT) 就會等於 s(aT):
BlindPoint(sT) => a(sT), a// a(sT) === s(aT)
此時如果將 aT 跟 s(aT) 送給 Server Redeem,此時因為
SignPoint(aT, s) => s(aT)
所以就可以兌換了,這樣造成 Client 可以無限地用任意數值兌換 token。
Scenario 3
這次我們讓 Client 先選擇一個純數 t,並且透過一種單向的 hash 方式來產生一個在橢圓曲線上的點 T,並且在 redeem 階段時原本是送出 T, sT 改成送出 t, sT。
因為 redeem 要送出的是 t,上個情境時透過任意數 a 來產生 s(aT) 的方法就沒辦法用了,因為 t 跟 sT 兩個參數之間並不是單純的再透過一次 BlindPoint() 就可以得到,所以就沒辦法無限兌換了。
Issue
T = Hash(t) bT -> <- sbT
Redeem
t, sT ->
問題:Redemption hijacking
在這個例子裏面,Client 其實是沒有必要傳送 sT 的,因為 Server 僅需要 t 就可以計算出 sT,額外傳送 sT 可能會導致潛在的 Redemption hijacking 問題,如果在不安全的通道上傳輸 t, sT 就有可能這個 redemption 被劫持作為其他的用途。
不過在網站上沒講出實際上要怎麼利用這個問題,但是少傳一個可以計算出來的資料總是好的。Client 只要證明他知道 sT 就好,而這可以透過 HMAC (Hash-based Message Authentication Code) 達成。
Scenario 4
步驟跟前面都一樣,唯一不一樣的地方是 redeem 的時候原本是傳 t, sT,現在則改傳 t, M, HMAC(sT, M),如果再介紹 HMAC 篇幅會太大,這邊就不解釋了,但可以是作是一個標準的 salt 方式讓 Hash 出來的結果不容易受到暴力破解。
這樣的特性在這個情境用很適合,因為 Server 透過 t 就可以計算出 sT,透過公開傳遞的 M 可以輕易地驗證 client 端是否持有 sT。
Issue
T = Hash(t) bT -> <- sbT
Redeem
t, M, HMAC(sT, M) ->
問題:Tagging
這邊的問題在於 Server 可以在 issue 階段的時候用不一樣的 s1, s2, s3 等來發出不一樣的 sT’,這樣 Server 在 Redeem 階段就可以得知 client 是哪一個 s。所以 Server 需要證明自己每次都用同樣的 s 同時又不透漏 s 這個純亮。
要解決這個問題就需要用到前面我們講解的零知識證明 DLEQ 了。
Scenario 5
前面的 DLEQ 講解有提到,如果有 Peggy 有一個 s 秘密純量,我們可以透過 DLEQ 來證明 Peggy 知道 s,但是又不透漏 s 真正的數值,而在 Privacy Pass 的機制裡面,Server 需要證明自己每次都用 s,但是卻又不用揭露真正的數值。
在 Issue 階段 Client 做的事情還是一樣傳 bT 給 Server 端,但 Server 端的回應就不一樣了,這次 Server 會回傳 sbT 與一個 DLEQ 證明,證明自己正在用同一個 s。
首先根據 DLEQ 的假設,Server 會需要先公開一組 G, H 給所有的 Client。而在 Privacy Pass 的實作中則是公開了 G 給所有 Client,而 H 則改用 bT 代替。
回傳的時候 Server 要證明自己仍然使用同一個 s 發出 token,所以附上了一個 DLEQ 的證明 r = v - cs,Client 只要算出以下算式相等就可證明 Server 仍然用同一個 s (記住了 H 已經改用 bT 代替,此時 client 也有 sbT 也就是 sH):
vH = rH + c(sH) // H 換成 bTvbT = rbT + c(sbT) // 把 r 展開成 v - csvbT = (v - cs)bT + c(sbT) // (v - cs)bT 展開成 vbT - csbTvbT = vbT - c(sbT) + c(sbT) // 正負 c(sbT) 消掉vbT = vbT
這樣就可以證明 Server 依然用同一個 s。
Issue
T = Hash(t) bT -> <- sbT, DLEQ(bT:sbT == G:sG)
Redeem
t, M, HMAC(sT, M) ->
問題:only one redemption per issuance
到這邊基本上 Privacy Pass 的原理已經解釋得差不多了,不過這邊有個問題是一次只發一個 token 太少,應該要一次可以發多個 token。這邊我要跳過源文中提到的 Scenario 6 解釋最後的結果。
Scenario 7
由於一次僅產生一個 redeem token 太沒效率了,如果同時發很多次,每次都產生一個 proof 也不是非常有效率,而 DLEQ 有一個延伸的用法 “batch” 可以一次產生多個 token, 並且只有使用一個 Proof 就可以驗證所有 token 是否合法,這樣就可以大大的降低頻寬需求。
不過這邊我們就不贅述 Batch DLEQ 的原理了,文末我會提及一些比較有用的連結跟確切的源碼片段讓有興趣的人可以更快速的追蹤到源碼片段。
Issue
T1 = Hash(t1) T2 = Hash(t2)T3 = Hash(t3)b1T1 ->b2T2 ->b3T3 -> c1,c2,c3 = H(G,sG,b1T1,b2T2,b3T3,s(b1T1),s(b2T2),s(b3T3)) <- sb1T1 <- sb2T2 <- sb3T3 <- DLEQ(c1b1T1+c2b2T2+c3b3T3:s(c1b1T1+c2b2T2+c3b3T3) == G: sG)
Redeem
t1, M, HMAC(sT1, M) ->
結論
Privacy Token / Trust Token API 透過零知識證明的方式來建立了一個不需要透漏太多隱私也可以達成跟 cookie 相同效果的驗證方式,期待可以改變目前許多廣告巨頭透過 cookie 過分的追蹤使用者隱私的作法。
不過我在 Trust Token API Explainer 裡面看到這個協議裡面的延伸作法還可以夾帶 Metadata 進去,而協議制定的過程中其實廣告龍頭 Google 也參與其中,希望這份協議還是可以保持中立,盡可能地讓最後版本可以有效的在保護隱私的情況下完成 Cross-domain authorization 的功能。
參考資料
IETF Privacy Pass docs
Privacy Pass: The Protocol
Privacy Pass: Architectural Framework
Privacy Pass: HTTP API
Cloudflare
Supporting the latest version of the Privacy Pass Protocol (cloudflare.com)
Chinese: Cloudflare支持最新的Privacy Pass扩展_推动协议标准化
Other
Privacy Pass official website
Getting started with Trust Tokens (web.dev)
WICG Trust Token API Explainer
Non-interactive zero-knowledge (NIZK) proofs for the equality (EQ) of discrete logarithms (DL) (asecuritysite.com) 這個網站非常實用,列了很多零知識證明的源碼參考,但可惜的是 DLEQ 這個演算法講解有錯,讓我在理解演算法的時候撞牆很久。所以使用的時候請多加小心,源碼應該是可以參考的,解釋的話需要斟酌一下。
關鍵源碼
這邊我貼幾段覺得很有用的源碼。
privacy pass 提供的伺服器端產生 Proof 的源碼
privacy pass 提供的瀏覽器端產生 BlindPoint 的源碼
github dedis/kyber 產生 Proof 的源碼
[ZKP 讀書會] Trust Token Browser API was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
google cdn是什麼 在 矽谷輕鬆談 Just Kidding Tech Facebook 的最佳解答
#就地避難在家鍛鍊寫作能力
軟體工程師系統設計面試準備指南
當你有了幾年的工作經驗以後,在找工作時一定會遇到系統設計的面試,有鑒於大部分的面試心得都是針對演算法以及資料結構的程式面試 (包括我之前寫的美國軟體工程師求職心得),對於系統設計的準備資源還真的不多,本篇要來剖析系統設計面試,介紹面試的流程、正確的心態以及準備的方向,讓大家再也不怕系統設計面試!
Medium 好讀版:https://medium.com/jktech/%E8%BB%9F%E9%AB%94%E5%B7%A5%E7%A8%8B%E5%B8%AB%E7%B3%BB%E7%B5%B1%E8%A8%AD%E8%A8%88%E6%BA%96%E5%82%99%E6%8C%87%E5%8D%97-acf6ab1f502f?source=friends_link&sk=ca40acf60b749cb1b32c17a868b0c1a3
#為什麼系統設計很重要?
在程式面試表現優異,可以讓你順利拿到 Offer;但是系統設計會決定你加入公司的職等!這也就是為什麼有些人有十年經驗只能拿到 Mid-Level (L4) 的 Offer,而有些人只有五年經驗卻可以拿到資深工程師以上 (L5+) 的 Offer。
另外,如果你是面試 Staff 或是 Principal 級別以上的話,除了系統設計以外,有些公司還會有 Technical Leadership 的面試,來判斷你是否有能力可以跟不同的部門合作、解決問題的不確定性、帶領資淺的人然後推動並且完成一個跨部門的大型技術專案。
簡單來說,系統設計用來判斷你是 L4 或是 L5+,Technical Leadership 面試用來判斷是 L5 或是 L6+。
#為什麼系統設計很難準備?
大多數應徵者在準備的時候會過度偏重於程式面試,原因也不難理解,程式問題的定義很清楚,有給定的輸入以及預期的輸出,就算你真的想不出來,LeetCode 上的討論區也有參考答案;這種有考古題可以參考的面試,對於台灣教育出來的人來說相對好準備,隨著你解的問題多了,你也會更有信心,不知不覺甚至還會刷上癮了呢!但系統設計卻非如此。
系統設計面試的問題描述通常很模糊 (這是刻意的),沒有給定的輸入與輸出,比較沒有既定規則可以遵循,然後也沒有一個標準答案,針對不同系統你需要提出不同的解法然後分析優缺點,一樣的問題,面試官也會針對你過去經驗往不同的方向問,有些問題你工作上沒有碰過還真的回答不出來,這也就是為什麼很多人看到系統面試就怕了。
#到底要怎麼準備?
首先我們要先建立一個觀念:沒有任何一個人可以知道所有的技術細節
不管你的面試官有多少年經驗,不管他們再怎麼資深,在變化快速的軟體產業,沒有人可以知道所有事情,一定有你知道而他們沒聽過的事情!
請把系統設計當成分享你過去所學的面試,這個面試的目的在於展示你對於軟體架構能力的廣度跟深度,你必須可以給出大方向的架構,知道有哪些元件 (廣度),同時針對你熟悉的領域深入探討更多細節 (深度),並且提出幾個解決方案,分析優缺點,並且針對系統需求選擇合適的解法。
大方承認自己對某些領域的細節不熟,也是完全沒問題的,只要讓面試官了解你知道這個東西,如果要深入了解的話你知道有哪些方向要努力,這樣就夠了,因為在大型的軟體專案裡,一定是高度分工的,不會有人同時精通手機端、前端、後端、Infra 以及嵌入式或是硬體的。
講到這裡,相信你也知道如果真的要準備是準備不完的,這些知識是透過平常工作以及閱讀技術文章長期累積的成果,比較沒辦法臨時抱佛腳。
#具體來說會問什麼問題
舉例來說,一個系統設計的問題會像是這樣:如何設計 Facebook?
這類問題的描述通常會很大而且模糊,面試官不預期而且你也不可能在 45 分鐘內就設計出這些公司花了好幾年這麼多人力設計出來的產品,所以第一步要做的事情是確認需求:是要設計動態牆、Messenger、廣告系統還是推薦系統?流量跟資料量為多少?需要支援全球的使用者嗎?
確認完需求以後,會針對最重要的幾個使用場景設計你的 Data model 以及 API,接著畫出大的系統架構圖,大致上會包含客戶端 (手機版/桌面版)、Load Balancer (Reverse Proxy)、App Servers 以及資料庫,接著可以針對細節下去討論,這邊開始就很自由了。
如果你是專精在資料庫,可以討論要用什麼資料庫以及資料要怎麼存可以讓特定使用場景的讀取以及寫入效能比較好,要怎麼做資料庫的 Replication 跟 Sharding 來服務更多的使用者?
如果講到快取,哪些地方可以加快取呢 (瀏覽器前端, CDN, App Server, 資料庫)?具體來說寫入快取有哪些方式以及優缺點 (write-through, write-around, write-back)?什麼時候要失效?要讓哪些資料失效?
如果聊到微服務器架構跟 Service Mesh,不同的服務怎麼跟其他的服務溝通? control plane 要怎麼更新 data plane 的設定?如果 control plane 掛了怎麼辦?要怎麼做 service discovery? 哪一種 Load Balancing 策略比較好 (round robin, random, least connection, ring hash, or maglev)?有些服務掛了影響到整個系統怎麼辦?什麼時候需要 circuit breaker ?
如果你是手機開發者,怎麼實現離線瀏覽?手機要有資料庫嗎?要怎麼以及多常跟伺服器同步?API 要怎麼設計?如何實現 Infinite Loading?剛 Po 文以後要怎麼樣在自己手機上馬上看到?
這些問題真的列舉不完,總之看到這裡你會了解為什麼我說這個面試是沒有範圍而且也準備不完的,重點應該放在跟面試官的討論,展現你在技術方面的廣度跟深度,讓面試結束的時候能夠有一個你們兩個人都同意的設計!
#準備材料
系統設計的資源比較分散,以下是我篩選過後覺得有用的資料,按照素材的類型作分類,也歡迎大家留言補充!
#入門影片
針對完全沒有概念的新手,我建議可以先從哈佛的 CS75 Lecture 9 Scalability 開始,裡面講到的很多基礎觀念都相當重要,值得一再複習,這些概念先有了以後再閱讀其他的材料會比較有感覺:
如果你看完這篇文章後還想再多了解系統面試的形式,也可以看一個前 Facebook 工程師分享的影片:
Distributed Systems in One Lesson 也很推,裡面提到不少業界在使用的設計模式:
有一個需要付費的資源是 SystemsExpert,每個影片會講解一個系統設計重要的概念,我個人覺得內容有點淺所以沒有買,但是整理地還算不錯,如果你看完他們免費的影片有興趣還是可以參考一下。
#閱讀文章
影片是一個讓你很好理解大方向概念的方式,但是如果你要深入理解背後的原理還有怎麼運作的細節,還是得透過大量以及深度的閱讀來吸收呀!
system design primer 整理了很多系統設計的資源,資料量很夠, 個人的建議是先快速過一遍,不要細讀,先知道總共有哪些元件,大概是做什麼用的就好,接著針對有興趣的部分在深入研究,建立自己的知識庫。
Grokking the System Design Interview 也是很多人推薦的材料,主要是針對系統設計的問題提供範例解答,他們的答案可以當作一個參考,但面試的時候不要完全照著回答,還是得看跟面試官討論的結果來進行,但這個是需要付費的,有興趣可以用我的推薦碼註冊購買。
如果你不想花錢或是不確定 Grokking 的文章你喜不喜歡,有一個類似的網站 Crack the System Design Interview 整理得也還不錯。
#書籍
唸書是一個有系統性學習的方法,如果你只想選一本書來看,就選這本大家都推的系統設計聖經 — Designing Data-Intensive Applications,簡稱 DDIA,這本書適合的對象是想要長期準備系統設計或是分散式系統的人,裡面舉的例子都是實際上業界遇到的問題,不會有以前讀教科書那種工作又用不到的感覺;但也因為是書,花了一些篇幅在講解背景知識,包含以前的系統是怎麼設計的以及如何演進到現在,對短期要準備面試的人效率會有點低,所以不適合有時間壓力的人。
這本書我目前讀了一半,最大的收獲是它解釋了很多為什麼現代的系統要做這樣的設計,我們針對不同的系統要求可以有哪些解法,這些解法各有什麼優缺點,總之分散式系統就是我們解決了一個問題,但又會產生更多要考量的點,一切都是 trade-off。
但這本書也不是沒有缺點的,首先我覺得是本書的英文沒有很好讀,我常常一段看了好幾遍才知道他想表達的重點是什麼,而且,有些很重要的觀念常常藏在一段文字裡用一句話帶過,但是不太重要的觀念卻使用 Bullet Point 表達;另外這本書話常常講一半,一些觀念提到了一點卻說我們後面再聊,也因為這樣,我在考慮要不要幫大家整理每一個章節的重點,翻成中文分享給大家,有興趣的朋友麻煩拍手留言告訴我!
除此之外,Google 的 SRE Books 內容也很實在,但是每一個章節的內容是獨立的,建議大家選擇想研究的章節跳著看就好。
最後,Distributed systems for fun and profit 的內容也很好,以分散式系統的理論為主,比較沒那麼針對系統設計面試。
#還想閱讀更多嗎?
我知道光是上面的資源就已經讀不完了,但是行有餘力的話,平時也可以多看看各大公司的技術部落格或是訂閱技術週刊如 TechBridge (台灣) 、HackerNews 以及 InfoQ 等等。
此外,參考別人的經驗也是很好的方式,最近剛好幾個朋友剛找完工作,他們分享的矽谷找資深工程師工作心得分享以及2020 上半年軟工找工經驗分享也都很值得看!
最後,在工作上使用到的技術,除了會用以外,最好也要花時間去研讀技術文件,了解他們設計的考量以及支援的場景,大部分這類型針對開發者的文件寫得會比較深入,所以也是相當好的學習素材;我自己過去一年因為工作上需要整合 Envoy 到我們公司的 Traffic Infrastructure,從他們的文件中學到很多 Service Mesh 跟微服務器的重要概念,學習的深度都是其他資源無法提供的。
#總結
這篇文章我們整理了很豐富的系統設計資源,希望大家不要被這滿滿的資訊量嚇跑。
請記得,我們永遠有各種方法在短期內針對面試做準備,提升面試的表現,但這都只是一時的,沒辦法讓你一夕之間就成為專家;如果想要追求長期的持續成長,那麼沒有捷徑 — 就是養成每天學習以及閱讀的習慣,一開始真的很難看到效果,但是當你持續一週、一個月甚至是一年以後,你會明顯感受到自己的成長,這些投入的時間都是騙不了人的。
如果這篇文章對你有幫助,請拍手留言加訂閱,並且分享給更多有需要的人知道!
google cdn是什麼 在 コバにゃんチャンネル Youtube 的最佳貼文
google cdn是什麼 在 大象中醫 Youtube 的最佳解答
google cdn是什麼 在 大象中醫 Youtube 的最佳解答
google cdn是什麼 在 在 6 分鐘內了解什麼是 Cloud CDN - Facebook 的推薦與評價
Cloud CDN is a content delivery network that accelerates your web and video content delivery by using Google's Global Edge Network to bring ... ... <看更多>
google cdn是什麼 在 簡直是Google Play、Kindle、Netflix的合體- 古巴的「人肉CDN」 的推薦與評價
古巴的Internet基礎設施非常落後,全國只有5% 的人能連上Internet,而且是速度奇慢的撥號網路。Google 董事長(現Alphabet 董事長)施密特曾在今年3 ... ... <看更多>
google cdn是什麼 在 [GCP 教學] 027 Cloud CDN 是什麼?功能介紹與效能測試[有字幕] 的推薦與評價
東東GCP教學#東東GoogleCloud #東東 Google #GCP虛擬主機#GCP伺服器#GCP雲端# cdn #cloudcdn #googlecdn大家好,這裡是 Google Cloud Platform GCP教學 ... ... <看更多>