TỪ VỰNG IELTS ANIMAL TESTING (Kèm ý tưởng)
PHẦN TỪ VỰNG
▪animal testing ≈ animal experimentation: thí nghiệm trên động vật
▪the breeding of genetically modified animals: việc nhân giống động vật biến đổi gen
▪non-animal alternative methods: các phương pháp thay thế phi động vật
▪to undergo safety testing involving animals: trải qua thử nghiệm an toàn sử dụng động vật
▪to replace tests with alternative techniques: thay thế các xét nghiệm bằng các kỹ thuật thay thế
▪to introduce human material into animals: đưa các tế bào/ mô… của con người vào động vật
▪to put human breast tumour cells into mice: đưa tế bào khối u ở người vào chuột
▪to allow researchers to test cancer drugs on human tissue: cho phép các nhà nghiên cứu thử nghiệm thuốc ung thư trên mô người
▪experiment on cell structures instead of whole animals: thí nghiệm trên cấu trúc tế bào thay vì trên toàn bộ cơ thể động vật
▪to use computer models: sử dụng mô hình máy tính
▪study human volunteers: nghiên cứu tình nguyện viên là con người
▪to use epidemiological studies: sử dụng nghiên cứu dịch tễ học
ARGUMENTS FOR ANIMAL TESTING
▪to contribute greatly to scientific advances: đóng góp lớn cho những tiến bộ khoa học
▪to be used to test drugs before they are given to humans: được sử dụng để kiểm tra thuốc trước khi được sử dụng trên đối tượng người
▪to study the effects of genetic diseases: nghiên cứu ảnh hưởng của các bệnh di truyền
▪to find out how genes work: tìm hiểu cách thức hoạt động của gen
▪to explore how organisms function: khám phá cách thức hoạt động của các bộ phận
▪to investigate treatments for human diseases: nghiên cứu các phương pháp điều trị bệnh ở người
▪to be essential in the quest to understand human diseases and ▪to develop new treatments: trở nên thiết yếu trong nỗ lực tìm hiểu các căn bệnh ở người và phát triển các phương pháp điều trị mới
▪advances in the understanding of genetics → animals can be bred with specific genetic traits → allow researchers to explore a range of conditions (cancer, heart disease, stroke, dementia): những tiến bộ trong sự hiểu biết về di truyền → động vật có thể được nhân giống với những đặc điểm di truyền cụ thể → cho phép các nhà nghiên cứu khám phá một loạt các tình trạng bệnh lý (ung thư, bệnh tim, đột quỵ, mất trí nhớ)
▪serious medical or life-saving purposes: những mục đích cứu người và mục đích y tế quan trọng
▪a wealth of medical advances → make with the help of animal research (new vaccines, treatments for cancer, Parkinson’s disease, asthma and HIV): vô số tiến bộ y tế → được thực hiện với sự trợ giúp của nghiên cứu động vật (vắc-xin mới, phương pháp điều trị ung thư, bệnh Parkinson, bệnh hen suyễn và HIV)
ARGUMENTS AGAINST ANIMAL TESTING
▪to cause suffering to animals: gây đau khổ cho động vật
▪cruel, unethical, meaningless/pointless: độc ác, phi đạo đức, vô nghĩa
▪the differences in physiology, genetics and cell structures between animals and humans → invalidate most cures devised by animal experimentation: sự khác biệt về sinh lý, di truyền và cấu trúc tế bào giữa động vật và con người → vô hiệu hóa hầu hết các phương pháp chữa bệnh được tạo ra bởi thí nghiệm trên động vật
▪HIV → deadly to humans but not to most laboratory animals → studying HIV in other species → may not produce results→ applicable to humans: HIV → gây tử vong cho người nhưng không phải với hầu hết các động vật thí nghiệm → nghiên cứu HIV ở các loài khác → có thể không tạo ra kết quả → áp dụng cho người
▪animals do not get many of the human diseases that we do: động vật không mắc nhiều bệnh mà chúng ta đang mắc
▪treatments showing promise in animals → rarely work in humans: phương pháp điều trị hứa hẹn ở động vật → hiếm khi hoạt động trên con người
https://ielts-nguyenhuyen.com/tu-vung-ielts-chu-de-animal-testing/
#ieltsnguyenhuyen
Chúc page mình học tốt nhé <3
同時也有2部Youtube影片,追蹤數超過8,430的網紅TianChad 田七摄影,也在其Youtube影片中提到,Here's quick tutorial on how to do night #timelapse or #hyperlapse using Samsung phone. It will capture light trails of car and and anything that emit...
「how to find the range of a function」的推薦目錄:
- 關於how to find the range of a function 在 IELTS Nguyễn Huyền Facebook 的最讚貼文
- 關於how to find the range of a function 在 Taipei Ethereum Meetup Facebook 的精選貼文
- 關於how to find the range of a function 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最讚貼文
- 關於how to find the range of a function 在 TianChad 田七摄影 Youtube 的最佳貼文
- 關於how to find the range of a function 在 Faa Firds Youtube 的最讚貼文
how to find the range of a function 在 Taipei Ethereum Meetup Facebook 的精選貼文
📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
how to find the range of a function 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最讚貼文
🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้เลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php…
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
🤓 Many people may have complained that ′′ I have studied the number, why I haven't used it
This is just an example to know the number we studied in high school. The end.
Shouldn't leave if you think about studying computer at a high level.
.
👉 1) Linear equation
Starting from a straight line equation that looks like y=mx+c called standard photo.
- when m is steep
- c section is a y core cutting point
.
Linear equation, so we can study in level 4
Enough in the university. 5 Computational Science
You will see the benefits of a straight line equation. Used in data science (data science)
Linear regression data analysis
.
When we have data backwards in the past
Then can be taken to plot on the graph x with y
The result appears that the information has a straight line of relationships.
In case, we can find the most suitable straight line equation (optimize)
Presentation for future advance information
.
But in case the relationship of information finds it not a straight line.
We can also use equations that are not straight lines to predict information.
.
👉 2) Matrix
A group of numbers that are written in a square or square.
Apart from using to solve many variables.
It will be useful when you compilate photos. (Image processing)
Or computer vision work (computer vision)
.
This is what we have to say. The digital photos we see are beautiful.
But the computer doesn't see it as a human.
It's seen as a matrix. Inside the matrix is a number of colors.
And we can do math with pictures
For instance, subtract, multiply with digital photos in the matrix corner.
.
👉 3) Probability
For example, Bayes s' theorem theory
Theory of probability
Find out which hypothesis is most accurate using previous knowledge (Prior Knowledge)
.
This theory is applied to data analytics and machine learning.
For example, find the probability that green tea will be manufactured from Thailand's factory.
Consider the probability that patients have cancer when they recover from coronavirus infection.
Etc.
.
👉 4) Calculus
For example, being used in neural network
Which is also an artificial neural network that imitates brain cells.
But really in the network, it consists of weight
.
This weight is a random number that starts randomly.
Time will find the right weight (optimize)
It will be fined little by little
By principle of derivative or derivative.
.
👉 5) Logic
This subject is referring to ′′ plural ′′ meaning a sentence that gives value to True or False.
Includes using different types of plural connectors, whether it's ′′ and or when etc.
.
This aspect of computer system is fundamental.
Because basic computer circuits are only 0 or 1 numbers.
So it can be replaced with False or True in logic.
Not only that, the electronic circuit also has a logical action.
Whether it's ′′ and or no etc.
.
The more programming, the more I use.
Because we have to compare terms True or False
In controlling the program's working path
.
👉 6) function
Function is a relationship from one set called ' domain ' to another set called ' Range ' by unique member.
Which concepts function in mathematics
It was also applied to functional programming.
.
👉 7) Geometry analysis
Being applied to Computer, Graphics or Games
In view of people who use various drawing programs or animation programs.
We just click and drag. It's done. Right?
.
But I don't know that the program time will draw shapes like a rectangle, crop of various cones.
All in Geometry. Analyse the plot. Draw one at a time. Let us use it.
.
👉 8) Year Takorus
The famous triangle theory is applied to measure distance between spots.
It will be useful to digest data using algorithm.
K-Nearest Neighbors (KNN)
Thai name is ′′ nearest neighbourhood method
It will also be implemented, analyzed data, including machine learning.
I don't want to talk too much. Single. 5 I will know KNN in Calculation Theology.
.
👉 9) Preliminary Graph Theory
Theoretical Graph Oyler (Eulerian graph)
That we have studied in high school. 5 will be useful in computer class
For example, when studying in computer network subjects, find the best way to send information.
Or you can look at data structures as graphics. Think of different links on websites. You can be connected to a graph.
.
👉 10) m & LOGARIETY
We may not see the application frankly.
But in assessing performance of programming time algorithm.
He will use Big O. I don't want to explain too much.
This story is written in the textbook. Calculating in the university. 4 (Let's find it to read)
.
Big O semester may sometimes be seen in esponical or logarithm.
If you don't understand what Exponcial or Lokarithm is.
It doesn't explain how good or bad our alitum performance is.
.
+++++++
How are you? If you are interested, I want to know the number. The end.
What else can I apply to study?
If you want to know, I recommend the book (selling)
.
′′ Artificial Intelligence (AI) is not difficult ′′ book.
It can be understood by the number. End of book 1 (Thai language content)
Best seller ranked in MEB computer book category.
.
The contents will describe Artificial Intelligence (A) in view of the number. The end.
Without a code of dizzy
With colorful illustrations to see, easy to read.
.
If you are interested, you can order.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry, paper book. I don't have it yet. Sorry.
.
✍ Written by Thai programmer thai progammerTranslated
how to find the range of a function 在 TianChad 田七摄影 Youtube 的最佳貼文
Here's quick tutorial on how to do night #timelapse or #hyperlapse using Samsung phone. It will capture light trails of car and and anything that emit lights. My Samsung Galaxy S20 Ultra was updated with new camera feature (May 2020 firmware). There's new Close-up macro zoom feature on S20 Ultra. Do S20 and S20 + has this new feature too? Comment down and let me know if your S20 Ultra improved in performance and battery life!
Since we can only use the primary lens for Bight Hyperlapse, a wide lens like Moment 18mm lens is recommended
【10% OFF】 @MOMENT LENS & STOREWIDE with code "FIRSTMOMENT10"
https://moment.8ocm68.net/c/2247428/775341/11129
The Samsung Galaxy S20 Ultra is getting that dedicated Close-Up Zoom function, which is specially-designed to improve the phone’s focus performance at close range.
The image quality of the Night mode has been improved as well. Other enhancements that are exclusive to the Ultra include a more responsive fingerprint reader and better sound quality from the speaker.
Feel free to check out my previous video testing the Galaxy S20 Ultra #100xzoom, video record in #HDR10+ and #8Kfootage. You will see the photos and photography behind the scene live in action.
If you find this video helpful, do feel free to subscribe and thumbs up or share with your friends who might be interested.
Leave a comment/question below so I can help you find out. Thanks for watching! #withGalaxy #galaxys20 #galaxys20ultra #batucaves #kualalumpur #myyourshot #mobilephotography
@withgalaxy @galaxymobilejp @samsungmalaysia @samsungmobileusa
【????+?????+???????? ?? ????????】?
http://bit.ly/TianChadYT
***********************
FOLLOW ME ON:
Website: www.TianChad.com
Facebook: http://www.facebook.com/tianchad
Instagram: http://www.instagram.com/tianchad
Twitter: http://www.twitter.com/tianchad
SUPPORT ME THROUGH:
PATREON - https://www.patreon.com/tianchad
how to find the range of a function 在 Faa Firds Youtube 的最讚貼文
To enter the giveaway:
1.Answer in the description box: What is the hero product of Hiruscar Anti Acne Skincare range and what is the function of it?
2. Get 1 friend to subscribe to my channel and leave their channel link in the description box
3. Give this video a thumbs up, and be sure to subscribe to my channel
*5 winners will win a full set of Hiruscar Anti Acne Skincare products
*End date 26/9/2017
Goodluck! :)
WHAT IS HIRUSCAR ANTI-ACNE?
Hiruscar Anti-Acne range has been created to address mild to moderate of the various acne conditions like Blackheads/Whiteheads, Papules and Pustules with proven efficacy. It helps to control sebum secretion, reduces bacteria, removes dead skin cells, balances skin moisture level and reduces acne recurrence. Specially formulated to be gentle on skin, non-irritating and perfect for facial usage and acne-prone skin.
Why Hiruscar Anti-Acne?
Fast action and it is an effective treatment for various types of acne. Acne spot visibly reduce in size in 2 days* due to the product’s keratolytic property. And you can depend on it to improve the acne condition within 1 week* by making Hiruscar Anti Acne range as part of your daily skincare routine.
Hiruscar Anti Acne helps to reduce acne, reduce red mark on acne and acne recurrence.
Contains Salicylic Acid that will promote the sloughingaway of dead skin cells and unblock pores.
Formulated with unique ingredient – MPS which helps increases and improves skin’s hydration level.
Contains Vitamin C to reduce dark spots from blemish and acne.
Alcohol free and colorant free formula.
Tested Non-Comedogenic and Hypo Allergenic and suitable for daily use.
HOW TO USE HIRUSCAR ANTI-ACNE?
Click here - http://hiruscar.com.my/how-to-use-hir... to find out more!
How to purchase, and what is the price? Click http://www.watsons.com.my/search?text... to shop or purchase it from any Watsons Malaysia stores or E-store!
LET'S BE FRIENDS!
Website: www.faafirds.com
Instagram:
http://instagram.com/faafirds
Twitter:
http://twitter.com/faafirds
Facebook page:
https://www.facebook.com/pages/Faafirds
Snapchat:
faafirds
Email:
faafirds@hotmail.com
DISCLAIMER
This video is not sponsored. All opinions are my own. There may be affiliate links used above. Most of the items I have purchased myself but some may have been gifted to me by companies.