[一仔陰謀論?初步證據唔多支持]因為啲成交分得好散,絶對唔似係咩大戶收貨散貨格局,似乎大家群毆多啲。
TLDR:持倉變化最多嘅富途花旗,佔總成交都唔夠2%,似大家大混戰多過咩有心人散貨沽貨。咁當然有心人都可以一大班嘅,但肯定唔係一兩丁。
1. 講明先,冇乜咩好大結論,純教學。行家亦見笑,幾時都話我啲文只係畀外行人睇。咁要陰謀論呀睇穿晒呀可以去第度。本人唔玩呢啲,但至少我教識你去用去睇呢啲東西。當然你從中睇到乜點演繹就你嘅事,同一副塔羅塔同一堆茶葉同一個八字,都唔同解法啦。好似烘件麵包買個椰菜睇下雲,都有人話見到耶穌見到佛祖咁。人係鍾意搵Pattern
2. 呢個東西,「花紙」,「數花」。又名睇CCASS。如果分五個字母讀就知外行人,扮行家就讀「思咳屎」。其實就係睇下啲股票在邊個倉。中央結算系統
3. 而呢樣東西,以前好複雜,聽聞仲要畀錢。後來電子化,港交所免費有得睇(https://bit.ly/31OoylC)。更偉大係,David Webb 嘅網再系統啲,連每日變動等等都搵晒。詳情自己上去睇,完全公開,亦都免費(https://bit.ly/2FfjIWJ)
4. 我就係教學,話畀大家知有免費資源,推動呢啲資訊民主化,等你唔好以為啲人好高深,其實Yan can cook so can you, Ivan can 9 up you can 7 up。係咪好偉大?係咪抵支持先(廣告時間)
(小廣告:Ivan Patreon 狼耳街華人,一個星期至少三篇,一個月一舊水唔使,開張幾日已300人訂,仲有兩篇免費試睇:https://bit.ly/3fUjd1e)
5. 好,當然係講一仔,282。但首先講幾樣入門要知嘅嘢
6. 首先,係所有股票都要放CCASS,例如你自己拎公仔紙放床下底都得。我都拎過實物股票,老一輩講「貼牆紙」典故就係咁嚟。
7. 第二,記住香港仲係行T+2,歷史原因。但,所以今日(13號星期四)你日頭暫時睇到嘅,係昨日(12號星期三)嘅嘢。而呢啲嘢,係反映兩日前(10號星期一)嘅交易
8. 第三,所謂嘅籮綿喱nominee制度。呢度你見到嘅持股,同平時講嘅「大股東」冇任何必然關係。黎智英係大股東(好似係),但佢嘅貨可以放在匯豐,中銀(Just saying),耀才,花旗,乜都得。甚至唔入CCASS都得(相信佢冇,至少大部份冇,陣間解)。
9. 當然你開間黎智英證券都得(拎牌咯),例如上次講思捷,咁例如莊生,旗下自己有間行,或者有啲行係友好,咁你大約可以將佢同間嘢當係同一路(https://fbook.cc/3Dvo)。但呢啲特例,一般嚟講,只睇呢啲嘢,唔會睇到背後係乜水。都話你同一個大股東可以分十間放都得。你地日常股買賣股票多數都係籮綿喱,你在中銀買咪中銀個名持股,在致富買咪係致富,所以人地個股東名冊上亦唔會有你。亦所以,如果你要去股東會,呃飲呃食或者問侯管理層老母,就要叫返你間行幫你搞。而你間行好可能覺得為難(因為好煩),但呢個係你合法嘅權益。
10. 解完晒,好簡單,呢個表就係,10號星期一,啲貨去咗邊。啲倉之間點嚟嚟去去,全部有得睇。幾廿年前公司可能出皮幾兩皮嘢搵條友做呢啲嘢。而家免費。所以你話做金融嘅唔與時並進(其實咩行業都係),只會畀人淘汰。當然一般情況下我唔使叻過部電腦,唔使跑得快過隻熊,叻過會同你爭飯食嘅人就得了。
11. 呢個表快手睇下,間證券行嘅名Name,渣住幾多股Holding,在期間(呢度係10號星期一)股數變化Change,最新總共佔總股本幾多巴仙(即係渣幾多%)Stake %,期間持股巴仙變動Stake % Change,應該不太難睇
12. 你見到,其實162間行渣住,咁中間我已經hide咗百幾行。而呢個表,係跟Stake % change 排的。即係啲貨由邊度走出嚟,又去咗邊個倉。
13. 仲有你見到匯豐我都特別冇hide,因為持股多,但變動唔多的。
14. 好,其實不難睇到,最多貨咪IB走出嚟,另外花旗都唔少。去咗邊?富途,或者中銀。咁但,唔好,記住唔好over interpret.換著普通人,特別先有結論嘅,咪可以自己懶醒咁話「哈哈,仲唔畀我捉到大戶手影!」(居然有人覺得咁樣免費就睇到大戶手影,大戶未免太廢,正如好多人望住個股票機睇盤就以為睇到大戶部署)「仲唔係外資沽貨中資買貨!」特別有政治諗法嘅,更加可以fit in story , any story。咪話有人睇薯仔都見到耶穌,睇聖經又見到密碼咁
15. 但,你都估到,邊有咁簡單?富途中銀買就一定中資?聽聞好多連登仔都用富途啦,貪平又好,虛則實之又好,唔好以為券商係中資,代表客都一定係。反之亦然。固然我估大陸佬未必個個敢在花旗開戶口,但,亦不代表果啲就係外資。
16. 呢個係埃汾啲文收視唔爆(相對啦)嘅原因,因為我唔會嘩眾取寵,係冇結論我就話冇結論。
17. 咁寫嚟做乜?首先教你睇呢堆嘢,二來,都話呢個表反映10號星期一之嘛,仲有好戲在後頭,呢篇教咗基本先,打後有嘢(如有)再研究。三來,其實都仲睇到其他嘢嘅。
18. 首先,見唔見Total Securities in CCASS?33%咋,8億6股,所以在市場有得交易嘅,根本就唔多。而你見10號星期一,已經14億股成交(下面volume有寫)(Value 係成交金額,$),幾咁驚人。
19. 但,你見即使係最頂嘅富途,多咗1%股本在佢地手(再強調,可以係好多個人),都不過係多咗2700萬股— 10號星期一14億股成交喎!最多嘅富途只係佔咁少(唔夠總成交2%),所以你見到,其實啲trade 係飛嚟飛去,初步唔似係咩好大陰謀咁入邊個手。沽貨亦係,最多嘅IB都只係冇咗2400萬股,同14億股成交,爭好遠
20. 仲有一點,肥佬黎。佢持股應該71%。好啦,智力遊戲。頭先咪講,CCASS先得33%。你應該得到結論,肥佬黎絶大多數貨,都冇入CCASS(冇乜咩特唔特別陰唔陰謀)。我就當CCASS全部都係佢(咩呀,一個人開百幾個戶口唔得?),都只係33%,唔足佢自己持股嘅一半。而當然我估,呢33%入面,大數都唔係佢(但總會有啲係佢,因為100-71細過 33)
21. 結論?冇架,但教識你睇呢啲嘢。同埋唔好過度演繹自己作故事,畀人笑就事少,自己冇進步事大。睇埋過幾日嘅花紙,睇下有冇嘢跟進
22. 而又講多樣,其實,早兩星期寫 陳智思檔亞洲金融(662)同盤谷銀行,咪寫過下呢個CCASS(https://fbook.cc/3Dvp)。嗰篇文寫得幾差下,但難得讀者都照like.但真係生命唔係一條直線,「好似Steve Jobs 去上西洋書法班咁」,你嗰日有睇陳智思篇文,咪會知呢舊嘢點運作咯。呢啲係平時嘅練習,無論係知識,思考,定係工具。台上一分鐘台下十年功。呢篇文兩千字,我連埋搵數整Excel 都唔使45分鐘就打完,係平時練習嘅結果—唔指係練打字,仲有其他嘢。
23. 版務:又其實呢篇文,原本係想只畀Patreon付費讀者。不過考慮到多人想睇有助我吸下engagement 先放呢度。但長此落去你都估到,呢度只會放啲吸睛但冇乜養份嘅文(呢篇還可以),金融零食是也。可能都有人覺得好過癮,甚至有啲付費讀者覺得喂呢啲薯條咁正做乜街外人食?你Chef Table煮啲嘢反而麻麻—但信我啦,食薯條冇益呀。
————————————————————————————————
最新收費影片:點解買金?點樣買金?點解港紙好快會下試7.85?咩公司20年冇減過派息?仲有咩疫情受惠公司少人講?
簡介及以前嘅片(未睇可訂):https://bit.ly/3iYMD0F
報名嘅,課程編號CC007:https://bit.ly/3ahugA3
報完名交咗錢,呢度log in:https://bit.ly/3gYXu9e
之後按最頂「按此觀看」就得
仲搞唔掂嘅,睇埋下面,或者搵客服,或者PM我。
-------------------------------------------------------------------------------
內容:
*美元弱勢,港紙將更弱勢
*紙將將由7.75趺落7.85
*買黃金:美元受壓銀紙亂印
*買黃金的四個實戰方法
*另類疫情受惠股
本星期內特惠售價: $80
課程編號:CC007
觀看期限:首次播放後一星期及限每影片4次
客服whatsapp: 63832145
log底數變換 在 數學老師張旭 Facebook 的最讚貼文
【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)
log底數變換 在 換底公式 的推薦與評價
... <看更多>