--課程已於 2020 年 11 月更新--
--課程已於 2020 年 11 月更新--
課程說明
本課程將讓你開始使用深度學習技術構建你的第一個人工類神經網路( artifical neural network )。按照我以前的邏輯回歸(logistic regression)課程,我們採用這個基本的構建塊(builing block),並使用Python和Numpy 構建全開的非線性類神經網路。本課程的所有教材都是免費的
我們使用softmax函數將以前的二進制分類模型擴展為多個分類,並且我們使用第一原理導出非常重要的訓練方法稱之為“反向傳播 (backpropagation)”。我會向你說明如何在Numpy中反向傳播代碼,首先是“緩慢的方式”,然後是“快速的方式”使用Numpy功能。
接下來,我們使用 Google 的新 TensorFlow 程式庫實現一個類神經網路。
如果你有興趣開始朝向成為深度學習專業人士這個目標,或者如果你對機器學習和資料科學感興趣,那麼你應該參加這門課程。我們超越了基本模型,例如邏輯回歸和線性回歸,我向你展示一些自動學習特徵的東西。
本課程為你提供了許多實用範例,以便你可以真正了解如何使用深度學習。在整個課程中,我們將實作一個課程專案,該專案將向你展示如何預測使用者在網站上的操作,這些使用者數據包括使用者是否在移動設備上,他/她們查看的產品數量,他/她們在你的網站上停留多長時間,他/她們是否是回訪使用者,以及他/她們訪問的時間。
課程結束時的另一個專案向你展示如何使用深度學習來進行臉部表情識別。想像一下,能夠預測某人的情緒只是基於一張圖片!
在讓你動手做後有了基礎,我提供了一些最新的類神經網路發展的簡要概述-稍微修改的架構和它們用來做什麼。
https://softnshare.com/data-science-deep-learning-in-python/
「logistic regression機器學習」的推薦目錄:
- 關於logistic regression機器學習 在 軟體開發學習資訊分享 Facebook 的精選貼文
- 關於logistic regression機器學習 在 軟體開發學習資訊分享 Facebook 的最佳貼文
- 關於logistic regression機器學習 在 軟體開發學習資訊分享 Facebook 的最讚貼文
- 關於logistic regression機器學習 在 PyInvest - [機器學習首部曲---邏輯斯迴歸Logistic Regression]... 的評價
- 關於logistic regression機器學習 在 PyInvest - [機器學習首部曲---邏輯斯迴歸Logistic Regression]... 的評價
- 關於logistic regression機器學習 在 機器學習基石(下) | qwerty 的評價
logistic regression機器學習 在 軟體開發學習資訊分享 Facebook 的最佳貼文
--課程已於 2020 年 11 月更新--
課程說明
機器學習是高需求的技能之一。 數據是新石油。
然而,學習 ML 然後進一步佈署一直很困難。 Azure ML 是 Microsoft 對機器學習進行民主化的一種方式。
Azure 機器學習(AzureML)被認為是遊戲規則變革者。 Azure 機器學習工作室 ( Azure Machine Learning Studio ) 是學習建構高級模型的好工具,無需寫一行程式碼,只要簡單地拖放即可編輯。
這個課程的設計是考慮到入門級的資料科學家,或者沒有程式設計或資料科學的背景的任何人。 本課程還將幫助資料科學家學習 AzureML 工具。 如果你已經熟悉機器學習的概念或基本知識,你可以跳過一些最初的講座或者以2倍的速度走過課程。
課程非常實用,你將能夠運用下列知識開發自己的高級模型
✅邏輯迴歸 ( Logistic Regression )
✅決策樹 ( Decision Trees )
✅線性迴歸 ( Linear Regression )
✅支持向量機 ( SVM : Support Vector Machine)
✅更多
不用任何程式設計。 而且,你將能夠將這些模型佈署為 Web 服務。
本課程是一門完整的機器學習課程,涵蓋基礎知識。 我們不僅要建立模型,還要解釋所有這些模型的各種參數以及我們可以在哪些方面應用它們。
在這個過程中,我們將從機器學習中經常使用的一些基本術語開始。
我也會解釋:
✅什麼是機器學習和一些現實世界的例子。
✅Azure 機器學習介紹
✅提供 Azure 機器學習工作室和高級體系結構的概述。
我們也將看看
✅建立 ML 模型的步驟
✅有監督和無監督學習
✅了解數據和預處理
✅不同的模型類型
✅AzureML 備忘清單 ( Cheat Sheet )
✅如何使用分類和迴歸
✅什麼是群聚或群聚分析
✅使用 AzureML 最強大的推薦引擎創建推薦系統
https://softnshare.com/machine-learning-using-azureml/
logistic regression機器學習 在 軟體開發學習資訊分享 Facebook 的最讚貼文
--課程已於 2020 年 6 月更新--
在本課程中,將採用一種非常有條理的、一步一步的方法來建立您所需要的所有理論,以瞭解支援向量機是如何真正運作的。
講師將使用邏輯迴歸( Logistic Regression )作為起點,這是你作為一名機器學習的學生學到的第一件事情。 因此,如果你想理解這門課程,只需要對邏輯迴歸(有一個好的直覺,並通過擴充套件,對直線、平面和超平面的幾何學有一個好的理解。
從這 9 小時的課程,你會學到
✅ 將支援向量機( SVMs )應用於實際應用程式: 影象辨識、垃圾郵件檢測、醫療診斷和迴歸分析( regression analysis )
✅ 從頭開始(基本幾何)理解支援向量機背後的理論
✅ 利用拉格朗日對偶(Lagrangian Duality)推導核心支援向量機
✅ 理解二次規劃( Quadratic Programming )是如何應用到支援向量機
✅ 支援向量迴歸
✅ Polynomial Kernel,,Gaussian Kernel,和 Sigmoid Kernel
✅ 基於支援向量機建立自己的 RBF 網路和其它神經網路
https://softnshare.com/support-vector-machines-in-python/
logistic regression機器學習 在 PyInvest - [機器學習首部曲---邏輯斯迴歸Logistic Regression]... 的推薦與評價
機器學習 首部曲---邏輯斯迴歸Logistic Regression] https://www.youtube.com/watch?v=vtMrtzYrPDI 邏輯斯迴歸在實務上的應用相當廣泛,主要用來處理二元分類的問題。 ... <看更多>
logistic regression機器學習 在 機器學習基石(下) | qwerty 的推薦與評價
Chap 10 Logistic Regression. Heart attack prediction. Not every people with bad condition will have heart attack → only P( ... ... <看更多>
logistic regression機器學習 在 PyInvest - [機器學習首部曲---邏輯斯迴歸Logistic Regression]... 的推薦與評價
機器學習 首部曲---邏輯斯迴歸Logistic Regression] https://www.youtube.com/watch?v=vtMrtzYrPDI 邏輯斯迴歸在實務上的應用相當廣泛,主要用來處理二元分類的問題。 ... <看更多>