因此大型模型可以handle rich data augmentation, 而輕量模型難以學習更加泛化的資訊. thundernet paper中有些相關的分析, 可以看看. 1. ... <看更多>
Search
Search
因此大型模型可以handle rich data augmentation, 而輕量模型難以學習更加泛化的資訊. thundernet paper中有些相關的分析, 可以看看. 1. ... <看更多>
Paper on arxiv.org: YOLOv4: Optimal Speed and Accuracy of Object Detection. GitHub: AlexeyAB/darknet. And below is how I installed and tested ... ... <看更多>
In the paper of scaled-yolov4, the author said: We use MSCOCO 2017 object detection dataset to verfy the proposed scaled-YOLOv4. So it means yolov4-tiny is ... ... <看更多>
... <看更多>
Short answer. You have to add --tiny to the command. Which, from the command you gave in the question, will be. python save_model.py --weights . ... <看更多>
This application downloads the tiny YOLO v2 model from Open Neural Network eXchange ... Paper of YOLOv4: Optimal Speed and Accuracy of Object Detection. ... <看更多>