[加拿大概念股嘅嘢]純金融討論。非曲,如果有錢我真係買,可惜冇錢。
1. 有冇得諗?你睇第一張圖就梗係話升咗咁多仲買。但只要我一轉第二張圖,就會變咗係好抵買,幾咁易就可以誤導你。你係炒momentum嘅,就畀第一張你睇。你係懶係value investor嘅(*),就畀第二張你睇。我?我買嗰時好多時都唔睇股價的。
==============
已經2000人訂!多謝大家!Two thousand people can't be wrong!(扯,幾百萬人冇訂添!).下一個目標當然係攞你命3000!
==============
一週年!比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費100. 畀年費仲有85折,20/40年費VIP 送本人著作一本。
3. 正經,雖然柏林牌同德國寶係香港嘢(**),加拿大鵝就真係加拿大公司。你見我貼都係TSE多倫多交易所,個股市成交唔少的。你心諗,點買加拿大股?首先,開個IB戶口就可以。不過又其實,隻嘢在美國都有上市嘅,買美股咪得。兩邊都係叫GOOS。
4. 全球暖化喎,仲羽絨?但你見隻波司登 3998股價都好勁的,估佢唔到。
5. 不過加拿大鵝就只係細公司,即使在加拿大,市值都排到近100.最大嘅係邊間?可能你都估唔到,就係……Shopify。一樣,加拿大上市美國亦都上,兩邊都叫SHOP,個編號都幾值錢。本人有買的
6. 加拿大仲有乜有趣嘅公司?實在係冇乜。一大抽都係啲悶嘢,銀行(RBC呀 Dominion呀CIBC呀Bank of Nova Scotia呀Bank of Montreal呀之類,做銀行時成日對),保險(宏利永明),石油開礦。不過都仲有幾間有趣嘅公司。
7. 第一間係Lululemon,我好早已經聽過啦!仲係個麻甩佬話我知的。當然係冇買啦。呢間就加拿大冇上市,只在美國上。留意仲要係上Nasdaq,夠晒高科技(其實Nasdaq都冇話係高科技)
8. 仲有路邊社個friend 路透社,原本英國公司,後來Thomson Reuters.畀加拿大買起咗。睇名都知,同多蒙特德國名宿路達撞名,冇錯就係一條叫路透嘅德國人搞出嚟的。路透社成立相當傳奇,最初都係靠財經資訊,即係股價,但用乜?電報?電話?你太年青了。最初係用…….信鴿!幾百隻的。快過當時嘅火車。而呢檔嘢搞出嚟,仲同德國數學王子高斯(Carl Friedrich Gauss)有關(***)
9. 仲有就係Restaurant Brands International,上市編號QSR(快餐店呀!),夠值錢,又係加拿大同美國一齊上。乜水?Burger King同Popyee炸雞
10. 仲有,BB,Black Berry,實在有啲難解釋畀新一代係乜。大哥電話佢地睇戲見過,以前撥輪式電話都可能在舊嘢舖頭見過。BB呢味嘢,真係有啲難解。想當年拎住部就真係金融才俊。本人都有幸用過,但好後期了,已經係touch screen,唔及以前有埋個qwerty Keyboard咁有型。而家好似冇出機了,做軟件,後來在星展都用過。又,間嘢原本叫Research in Motion,RIM,但係冇Research部門的。呢間夠煩,美國加拿大上市,但用唔同編號的。本人有一股咁大把,「富途開戶送的」
11. 仲有Canopy Growth 同Tilray,大麻股呀。美國未係十分合法嘛,所以全部都加拿大上的。
12. 仲有間Bombardier龐巴迪,飛機火車雪車。以前好似寫過。跌到趴街,一度得返100億港市值,同間1137差不多。後來又重組又賣嘢先走出困境
13. 而以上全部公司,都係大過加拿大鵝嘅。
(*)當年就個個都話自己係value investor,而家就個個都係growth investor disruption start up 由零到一,劏寫字樓都話高科技公司
(**)仲有間「德國上將」,聽名都型。
(***)冇法,每次講高斯都係要講呢個故事,唔係佢兩秒鐘就知道由1加到100係5050嘅故事,而係德國馬克嘅故事。德國10馬克(我屋企仲有一張)上面,印咗佢個樣。冇乜特別丫。但仲印埋高斯嘅名物:Normal distribution curver.都冇乜特別丫。不過,就連嗰條公式都印埋上去!(https://bityl.co/8qUh)。英國讀書時某老嘢教授講起呢個故事,大讚德國人呢啲先係尊重學問嘅民族,佢話佢就冇見過有第個國家整條公式上銀紙。後來有人話我知,瑞士(咪即係德國!)都有一套歐拉,唔係outline,歐拉Euler係個一人,《Imitation Game》套戲講數學家,居然讀錯Euler,認真抵打。而講開Imitation Game,新版英鎊就有圖靈,仲印埋公式了。肯定係聽咗老嘢教授講。
==============
已經2000人訂!多謝大家!Two thousand people can't be wrong!(扯,幾百萬人冇訂添!).下一個目標當然係攞你命3000!
==============
一週年!比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費100. 畀年費仲有85折,20/40年費VIP 送本人著作一本。
同時也有1部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本影片介紹從介紹幾個重要的 PDE 開始,說明了 PDE 應有的型式為何,然後介紹了三個必備的運算符號 (▽、div、△) 以及二個必備的計算公式 (分部積分、格林第一公式),最後說明了為什麼會有 Laplace equation 這個 PDE 【勘誤】 無,有任何錯誤歡迎留言告知 【...
高斯 數學 公式 在 知史 Facebook 的最佳解答
一位令歐美科學界敬仰的「南宋惡人」
歷史春秋網
作者:滄海明月生
桃花影落飛神劍,碧海潮生按玉簫。
這是《射鵰英雄傳》裡桃花島主黃藥師的武功寫照,除了出神入化的武功,這位狂傲的宗師對天文地理、五行八卦、奇門遁甲、琴棋書畫甚至農田水利都無一不精,堪稱複合型的學霸。
《神雕英雄傳》是金庸的成名作,以南宋、蒙古、金國三方勢力的角逐作為歷史背景。小說中黃藥師的出場,大約處於南宋的第四位皇帝宋寧宗當政時期。
巧合的是,這一時期的歷史裡也有一位多才多藝的學霸橫空出世。他弓劍嫻熟、精於星象音律、算術詩詞及建築營造。更為契合的是,黃藥師被視為亦正亦邪的狂士,這位學霸也一度被世人認定是劣跡斑斑的惡人,但在幾百年後卻被大洋彼岸的科學界集體敬仰。
一樣的天縱英才,一樣的毀譽參半。除了沒有一個冰雪聰明的女兒,這位學霸幾乎可以視作小說裡黃藥師的原型。
他就是南宋著名的數學家秦九韶,一位被聲名耽誤的天才。
一、英武少年
秦九韶是四川安岳人,他出身官宦世家,父親秦季棲是進士出身。公元1219年,主政巴中的秦季棲遭遇了軍士嘩變,一介書生的他只得攜家小棄城逃走。歷經數年的輾轉後,秦季棲到了都城臨安,朝廷不僅沒有治罪反而將他提拔為潼川知府,並命他舉家重返四川。
秦九韶的傳奇,就是從這時開始的,那一年他18歲,正值熱血沸騰的年紀。
此時的南宋,在西北一帶同時防範蒙古與金國兩方強敵。在蒙古的快馬彎刀之下,陝西、甘肅大部已被突破。潼川由於地形險峻被視作戰略要地,為此朝廷特意從西南募集了幾千名精壯的民兵,戰時隨軍禦敵,閒時作為民夫修建工事。這支民間武裝的首領,就是年輕的秦九韶。
能統領這樣一支隊伍,秦九韶絕對是有兩把刷子的。他生性聰慧好學,少年時就研習了大量的天文曆法典籍,又潛心學習土木工程,這些都轉化成了他安身立命的技能,手下的軍士對此都心服口服。
秦九韶是典型的別人家的孩子。他不僅理論知識過硬,軍事素質也相當優秀,他的馬術、騎射、劍術玩兒得非常溜,以致於當時的人們都以豔羨的語氣評價他:「遊戲、毬、馬、弓、劍,莫不能知」。
公元1236年,蒙古大軍攻入成都,四川的大部分州府都遭淪陷。此前的一系列戰鬥中,秦九韶展現出了職業軍人的素養,時常冒著箭雨指揮自若,就如他後來追憶的那樣:「歷歲遙寒,不自意全在失石間」。
如果人生照著這樣的軌跡前行,投身軍營的秦九韶多半會落得為國捐軀的結局。然而隨著從戰場調離到地方,秦九韶最終在數學領域突放異彩。
二、數學天才
在四川任職期間,秦九韶就已經展現出了數學方面非凡的天賦。
《郪縣誌》記載了這樣一則故事:公元1231年6月,郪江沿岸暴雨成災,當地一處名為核桃壩的地方,有兩個農夫為洪水沖毀的田界發生爭執。經過現場勘驗後,秦九韶發現各自為三角形合在一起的「三斜田塊」,被洪水沖成了不規則的田地。於是,他運用豐富的幾何知識,算出了田地的面積,再將其等分劃出了令兩人都滿意的邊界。
除此之外,民間還留下了諸多秦九韶的傑作,譬如杭州西溪有一座「道古橋」,就是由他設計修建的。對於秦九韶而言,這些不過是牛刀小試而已,真正令他揚名天下的,是一部名為《數書九章》的奇書。
公元1244年,在南京任通判的秦九韶,因母親去世回鄉守孝三年。遠離了政治紛擾的他,在研究曆法時發現年份越遠,曆法的誤差也越大,其根源就在於算術不夠精準。為此,他用三年的時間,完成了二十多萬字的《數書九章》,一經問世便引起了轟動。
即便是幾百年後的今天,這本《數書九章》裡蘊含的知識,也足以令學渣們抓狂。
比如書中的「三斜求積術」就是已知三角形的三條邊長,求三角形的面積,沒點兒幾何知識真還無從下手。令人驚嘆的是,秦九韶總結出的公式,與當代課本上的算法幾乎一致。而且他提出的配分比例和連鎖比例的命題,至今還有很強的現實意義。
《數書九章》共有9個門類,囊括天時、田域、測試、賦役、軍旅等與社會生活相關的內容。9類中又提出了9個問題,共計81道數學題,秦九韶在書中不止提出了問題,又精心地講述瞭解題原理和步驟,在給出答案的同時還有思路延伸。
如果南宋的科舉考試有數學的話,這本《數學九章》絕對是賣得脫銷的熱門書籍,可能連小朋友都人手一本,相當於當代的「奧數」。
《數書九章》裡的內容,涵蓋了如今初中甚至大學裡的數學課程。除了小數、複數、還有最小公倍數、代數運算,高次方程等。
這部著作代表了中世紀世界數學發展的最高水平,其中的「大衍求一術」領先西方數學家高斯554年,「正負開方術」比英國數學家霍納的解法早了572年。現代的數學家梁宗巨曾經這樣評價《數書九章》:「那時歐洲漫長的黑夜猶未結束,中國人的創造卻像旭日一般在東方發出萬丈光芒。」
三、毀譽參半
公元1248年,聲名遠播的秦九韶被宋理宗召見並得到了賞識,而他也由此成為中國歷史上第一位被被皇帝召見的數學家。
此後的秦九韶被提拔在江南一帶任肥缺,聲色犬馬的熏染使得他逐漸在官場中迷失了自我,變身為同僚們口誅筆伐的大惡人。
秦九韶早年還是文學青年,寫得一手好詞,因此與南宋晚期的詞家劉克莊相識。劉克莊的詞風豪放,充滿了愛國主義情懷,但在秦九韶成名以後,卻遭到了劉克莊的猛烈抨擊。
經過這位文壇大咖的宣傳,秦九韶為人不仁、不義、不孝、不廉」,甚至後來社會輿論還對他進行了人身攻擊,說他’暴如虎狼、毒如蛇蠍、非復人類」。更離奇的如「多蓄毒藥,如所不喜者,必遭其毒手」。
在諸多文字的渲染下,秦九韶的惡名似乎是被實錘了。
在這些記載裡,秦九韶橫行鄉里魚肉百姓,多次被取消任命;他利用自己在數學領域的特長攫取了上司的田產;更勁爆的是,秦九韶命屬下殺死親兒子,為此還精心地設計了毒殺、溺死、用劍自裁的三種方案。
趕上這樣蛇蠍心腸的老爹,手下人覺得太變態了就沒下手,私放了他兒子,秦九韶得知後竟巨額懸賞追殺。
從秦九韶的仕途經歷來看,他精於算計醉心官場權鬥,絕不是個善茬,但抹黑他的劉克莊也不是道德模範。南宋的政壇一直分為主戰派和主和派,秦九韶與樞密使吳潛交情深厚,主張武力抵禦蒙古,在詞裡高唱愛國的劉克莊卻依附權臣賈似道,積極沖當詆毀主戰派的鼓吹手。
四、死後哀榮
公元1268年,被貶至廣東梅州的秦九韶淒惶離世。由於生前遭遇的輿論攻擊太多,秦九韶死後,《宋史》和所有的地方志都沒有為他立傳,就連現在的學術界也將他視作有道德污點的天才。
從某種意義上說,秦九韶的悲劇也是南宋朝廷悲劇的縮影,如果因為黨派因為政見不合就置國運於不顧相互攻擊,那麼亡國之禍也為時不遠。
秦九韶死後的第八年,南宋滅亡。
令人唏噓的是,沒有被中國古代主流價值觀認可的秦九韶,在西方科學家的眼中卻得到了前所未有的尊敬。德國著名的數學史家康托爾稱讚他是「最幸運的天才」,美國著名的科學史家薩頓認為」秦九韶是他所在的民族,他那個時代,最偉大的數學家之一」。
時光荏苒,如今的安岳縣為秦九韶修建了紀念館。這位曠世奇才在幾百年後,終於以光輝正面的形象被世人銘記。
(本文由「歷史春秋網」授權「知史」轉載繁體字版,特此鳴謝。)
網站簡介:
歷史春秋網(www.lishichunqiu.com)成立於2010年6月,是一個以歷史為核心的文化資訊門戶網站,提供中國古代歷史、政治軍事、經濟文化、中醫養生、書畫藝術、古董收藏、宗教哲學等內容。致力於傳承國學經典,弘揚中華優秀傳統文化。
#知史 #歷史 #中國歷史 #秦九韶 #英武少年 #天縱英才 #毀譽參半 #南宋 #數書九章
高斯 數學 公式 在 數學老師張旭 Facebook 的最佳解答
【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)
高斯 數學 公式 在 數學老師張旭 Youtube 的最讚貼文
【摘要】
本影片介紹從介紹幾個重要的 PDE 開始,說明了 PDE 應有的型式為何,然後介紹了三個必備的運算符號 (▽、div、△) 以及二個必備的計算公式 (分部積分、格林第一公式),最後說明了為什麼會有 Laplace equation 這個 PDE
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
無
【講義】
本系列影片配合台灣清華大學王信華教授的 PDE 上課用筆記
如果想知道這部影片是對應到哪一個章節,可以參考封面灰色字樣
這個筆記市面上沒有在販售
如果需要的話,可以直接寄信給王教授跟他詢問
或是到清華大學對面的影印店詢問,因為有配合影印販售
【附註】
本影片專門為數學系的學生拍攝
【張旭的話】
你好,我是張旭老師
這是我為數學系學生拍攝的 PDE 教學影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學 PDE 的同學們,謝謝
【學習地圖】
整理中
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【聯絡方式】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
E-mail:[email protected]
【張旭老師其他頻道或社群平台】
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【特別感謝】
特別感謝丈哥 (王重臻) 協助我討論課程內容和錄影
還有昆霖熱心幫助我剪輯影片和上傳整理
沒有他們的幫忙
這個頻道是無法由我獨自一人建立起來的
另外,丈哥是我主要的合作夥伴
他的大學數學也很厲害
如果對我們產出的內容有任何問題或建議
也都可以直接與他聯繫
【丈哥資訊】
FB:https://www.facebook.com/HeLoFriend.JangGe
IG:https://www.instagram.com/iamjangge
YT:https://www.youtube.com/channel/UCmzhDwcxCj8Bf7XSFA0ynCQ
E-mail:fpn12099xd@gmail.com
【贊助我們】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內請用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#拉普拉斯算子 #拉普拉斯方程式來源 #格林第一公式
高斯 數學 公式 在 臺師補習班- 同學們, 你們知道俗稱「小高斯速算」的級數求和 ... 的推薦與評價
同學們, 你們知道俗稱「小高斯速算」的級數求和公式怎麼來的嗎? 這是德國著名的數學家高斯發現的。 話說高斯幼年聰明過人,在學時就已經表現出過人的數學能力。 ... <看更多>
高斯 數學 公式 在 【 (數學篇) 等差數列快速求和| 高斯8歲發現的公式】 - YouTube 的推薦與評價
內容簡介:0:00 引言0:28 內容難度0:47 等差數列中的元素1:55 高斯 的故事2:42 求和 公式 簡單拆解4:13 求項數 公式 4:54 求末項 公式 5:25 總結. ... <看更多>